首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper aims to document accurately the soft tissue anatomy and bony attachments of the posterior belly of the digastric muscle and other closely related muscles in the mastoid region of extant hominoids and fossil hominids. Five wet specimens including individuals of Pan, Gorilla and Pongo were dissected and described. Eight casts of fossil hominid cranial bases were also studied along with measurements and notes made from the same original fossil hominid specimens to assess their soft tissue markings in the light of the findings for the three great apes. The results indicate that whereas the attachment of the posterior belly of the digastric muscle in Homo sapiens is associated with a deep groove or fossa, it originates from a widened area and leaves no bony markings on the cranial base of the three great apes. Following a change in the position of the foramen magnum and the occipital condyles in hominids and H. sapiens the insertion of the posterior belly of the digastric has remained posteriorly positioned but has become compressed into a deep groove. It is likely that this has come about by the displacement of the more medial soft tissue structures which have been moved laterally away from the occipital condyles.  相似文献   

2.
Rudabánya, a rich late Miocene fossil site in northern central Hungary, has yielded an abundant record of fossil primates, including the primitive catarrhine Anapithecus and the early great ape Dryopithecus. While the affinities of Anapithecus are not clear, Dryopithecus is clearly a great ape sharing numerous characteristics of its dental, cranial and postcranial anatomy with living great apes. Like all Miocene hominids (great apes and humans), Dryopithecus is more primitive in a number of ways than any living hominid, which is probably related to the passage of time since the divergence of the various lineages of living hominids, allowing for similar refinements in morphology and adaptation to take place independently. On the other hand, Dryopithecus (and Ouranopithecus) share derived characters with hominines (African apes and humans), and Sivapithecus (and Ankarapithecus) share derived characters with orangutans, thus dating the split between pongines and hominines to a time before the evolution of these fossil great apes. Pongines and hominines follow similar fates in the late Miocene, the pongines moving south into Southeast Asia from southern or eastern Asia and the hominines moving south into East Africa from the Mediterranean region, between 6 to 9 Ma.  相似文献   

3.
To examine the evolutionary differences between hominoid locomotor systems, a number of observations concerning the growth of the pelvis among the great apes as compared to modern and fossil hominids are reported. We are interested in the size and shape of the coxal bones at different developmental stages across species that may elucidate the relationship between ontogeny and phylogeny (i.e., heterochrony) in the hominoid pelvis. Our hypotheses are: (1) do rates of absolute growth differ?, (2) do rates of relative growth differ?, and (3) does heterochrony explain these differences? Bivariate and multivariate analyses of pelvic dimensions demonstrate both the diversity of species-specific ontogenetic patterns among hominoids, and an unequivocal separation of hominids and the great apes. Heterochrony alone fails to account for the ontogenetic differences between hominids and the great apes. Compared to recent Homo,Australopithecus can be described as 'hyper-human' from the relative size of the ischium, and short but broad ilium. Australopithecus afarensis differs from Australopithecus africanus by its relatively long pubis. In multivariate analyses of ilium shape, the most complete coxal bone attributed to Homo erectus, KNM-ER 3228, falls within the range of juvenile and adult Australopithecus, whereas Broken Hill falls within the range of modern Homo, suggesting that the modern human ilium shape arose rather recently. Among the great apes, patterns of pelvic ontogeny do not exclusively separate the African apes from Pongo.  相似文献   

4.
Arterial meningeal patterns were observed for 100 hemispheres from great ape endocasts (Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo pygmaeus). Eight patterns emerged based on the relative contributions to the walls and dura mater of the middle part of the braincase of meningeal arteries that stem from two sources. These arteries enter the braincase through either the orbit (delivering blood from the internal carotid artery) or through the base of the middle cranial fossa (via the middle meningeal artery whose blood comes from the external carotid artery). The three genera of apes manifest different frequencies of the eight, patterns, with orangutans highly dependent on orbital meningeal arteries at one extreme, and chimpanzees showing the greatest reliance on the middle meningeal artery at the other. As was the case in an earlier study of rhesus monkeys, there is a trend across the two genera of African apes for increased mean cranial capacity to be associated with increased reliance on the internal carotid artery for supplying the middle portion of the braincase. However, unlike the case for macaques, this trend does not reach statistical significance in African apes. Because it is rare for humans to manifest significant arterial contributions from the orbit to the middle cranial fossa, the comparative data on monkeys, apes, and humans suggest that, during the course of vascular evolution in Homo, the middle meningeal artery eventually took over supply of the entire middle cranial fossa. This hypothesis should be tested in the hominid fossil record. Earlier work on meningeal arterial patterns in apes has traditionally relied on Adachi's system that was determined from humans and focuses on the origin of the middle branch of the middle meningeal artery. As a result, the extensive orbital contributions to the middle portion of the braincase that characterize apes were not recognized and the eight patterns described in this paper were often erroneously assigned to the three patterns that adequately describe only humans. Adachi's system should therefore be abandoned for nonhuman primates and early hominids. A correct understanding of meningeal arterial evolution cannot be achieved until the orbital contributions to the meningeal arteries are recognized and incorporated into an evolutionary study that spans from apes to fossil hominids to living people. © 1993 Wiley-Liss, Inc.  相似文献   

5.
The study of hominoid phylogeny is currently in a state of controversy and debate due to the discovery of new fossil material and reanalysis of the morphology of extant apes. An important key to the resolution of these debates lies in attaining a fuller understanding of the morphological differences in skull form between the African and Asian great apes. In this paper I have analyzed aspects of facial morphology and internal cranial anatomy in the great apes. Results from this study and previous ones suggest that Pongo is characterized by a marked dorsal deflection of the face relative to the basicranium. Many aspects of circumorbital, midfacial, palatal, and mandibular morphology in Pongo may be related to this airorynchous condition. This hypothesis is supported by Enlow's work on form and pattern in the primate and mammalian skull. The position of the face in known Sivapithecus appears to be similar to that seen in Pongo. Although Pongo may be specialized in its marked degree of airorynchy, it seems likely that an important derived feature linking African apes and hominids is a ventral rotation of the splanchnocranium on the neurocranium. The appearance of marked supraorbital tori and ethmofrontal sinuses are probably correlated developments. Additional implications of this work for debates about hominoid phylogeny are discussed.  相似文献   

6.
Unlike any great apes, humans have expanded into a wide variety of habitats during the course of evolution, beginning with the transition by australopithecines from forest to savanna habitation. Novel environments are likely to have imposed hominids a demographic challenge due to such factors as higher predation risk and scarcer food resources. In fact, recent studies have found a paucity of older relative to younger adults in hominid fossil remains, indicating considerably high adult mortality in australopithecines, early Homo, and Neanderthals. It is not clear to date why only human ancestors among all hominoid species could survive in these harsh environments. In this paper, we explore the possibility that hominids had shorter interbirth intervals to enhance fertility than the extant apes. To infer interbirth intervals in fossil hominids, we introduce the notion of the critical interbirth interval, or the threshold length of birth spacing above which a population is expected to go to extinction. We develop a new method to obtain the critical interbirth intervals of hominids based on the observed ratios of older adults to all adults in fossil samples. Our analysis suggests that the critical interbirth intervals of australopithecines, early Homo, and Neanderthals are significantly shorter than the observed interbirth intervals of extant great apes. We also discuss possible factors that may have caused the evolutionary divergence of hominid life history traits from those of great apes.  相似文献   

7.
The elucidation of patterns of cranial skeletal maturation and growth in fossil hominids is possible not only through dental studies but also by mapping different aspects of ossification in both extant African apes and humans. However, knowledge of normal skeletal development in large samples of extant great apes is flimsy. To remedy this situation, this paper offers an extensive survey and thorough discussion of the ossification of the posterior border of the sphenoid greater wing. Indeed, this area provides much information about basicranial skeletal maturation. We investigate three variants: the absence of the foramen spinosum and the position of both the foramen spinosum and the foramen ovale in relation to the sphenosquamosal suture. Providing original data about humans and 1,425 extant great ape skulls and using a sample of 64 fossil hominids, this study aimed to test whether different ossification patterns occurred during the course of human evolution. The incidence of three derived morphologies located on the posterior border of the sphenoid greater wing increases during human evolution at different geological periods. The evolutionary polarity of these three derived morphologies is assessed by outgroup comparison and ontogenetic methods. During human evolution, there is a clear trend for the foramen spinosum to be present and wholly located on the posterior area of the sphenoid greater wing. Moreover, in all the great ape species and in Australopithecus afarensis, the sphenosquamosal suture may split the foramen ovale. Inversely, the foramen ovale always lies wholly within the sphenoid greater wing in Australopithecus africanus, robust australopithecines, early Homo, H. erectus (and/or H. ergaster), and Homo sapiens. From ontogenetic studies in humans, we conclude that, during human evolution, the ossification of the posterior area of the sphenoid greater wing progressively surrounded the middle meningeal artery (passing through the foramen spinosum) and the small meningeal artery (passing through the foramen ovale). Am J Phys Anthropol 107:387–399, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Phylogeny, neoteny and growth of the cranial base in hominoids   总被引:1,自引:0,他引:1  
This study tests the hypothesis that there is a general pattern in the growth of the cranial base of Homo sapiens that is 'essentially neotenous' [Gould, 1977]. Juvenile and adult crania of Homo sapiens, Gorilla gorilla, Pan troglodytes and Pongo pygmaeus were studied and the cross-sectional growth curves for 10 measurements made on the cranial base (as viewed in norma basilaris) were compared. The results of this study suggest that relatively simple modifications to the timing or pattern of growth are insufficient to explain the observed morphological differences between the cranial base of modern Homo sapiens and the great apes.  相似文献   

9.
The origin of the fundamental behavioral differences between humans and our closest living relatives is one of the central issues of evolutionary anthropology. The prominent, chimpanzee-based referential model of early hominin behavior has recently been challenged on the basis of broad multispecies comparisons and newly discovered fossil evidence. Here, we argue that while behavioral data on extant great apes are extremely relevant for reconstruction of ancestral behaviors, these behaviors should be reconstructed trait by trait using formal phylogenetic methods. Using the widely accepted hominoid phylogenetic tree, we perform a series of character optimization analyses using 65 selected life-history and behavioral characters for all extant hominid species. This analysis allows us to reconstruct the character states of the last common ancestors of Hominoidea, Hominidae, and the chimpanzee–human last common ancestor. Our analyses demonstrate that many fundamental behavioral and life-history attributes of hominids (including humans) are evidently ancient and likely inherited from the common ancestor of all hominids. However, numerous behaviors present in extant great apes represent their own terminal autapomorphies (both uniquely derived and homoplastic). Any evolutionary model that uses a single extant species to explain behavioral evolution of early hominins is therefore of limited use. In contrast, phylogenetic reconstruction of ancestral states is able to provide a detailed suite of behavioral, ecological and life-history characters for each hypothetical ancestor. The living great apes therefore play an important role for the confident identification of the traits found in the chimpanzee–human last common ancestor, some of which are likely to represent behaviors of the fossil hominins.  相似文献   

10.
Although quantitative variations exist between living Man ( Homo sapiens sapiens ) and the extant great apes ( Pongo, Pan, Gorilla ) in such features of the articular surface of the temporal bone (a part of the temporomandibular joint) as the proportionate development of the postglenoid tubercle, the relative prominence of the articular tubercle and the slope of its posterior face, these do not individually effect a clear differentiation between the four extant genera. But in multivariate combination of these features, although Pan and Pongo are relatively closely associated, Gorilla and Homo sapiens sapiens are distinct, and also clearly differentiated from each other. The differences between genera of extant apes are, on average, as great as those between extant Man and individual apes.
As portrayed by such multivariate compound, this anatomical region in four fossil groups displays a unique configuration differentiating Homo sapiens neanderthalensis, Homo erectus pekinensis, Australopithecus africanus and Australopithecus robustus both from one another and from extant types. The differences are such that the fossil species lie uniquely and not intermediate between extant groups.
Definable age changes in this multivariate compound occur in both Man and apes but neither these, nor overall differences between adults, appear to be associated with marked contrasts in the pattern of jaw movement. It would thus seem improbable that inferences can be made from these features about the type of jaw movement that characterized the several fossil groups.  相似文献   

11.
Using samples of skulls of early and modern hominids and modern pongids we compare the plausibility of Evolutionist and Creationist viewpoints. Multivariate methods are used to assess the corollary of Creationism that all fossil specimens which Evolutionists consider to be hominids are either apes or humans. We conclude that the results of this study cannot easily be accommodated within a Creationist framework, and, therefore, contribute substantial evidence for the Evolutionist viewpoint.  相似文献   

12.
Compact bone distribution and biomechanics of early hominid mandibles.   总被引:1,自引:0,他引:1  
This investigation explores the effects of compact bone distribution on the biomechanical properties of the postcanine mandibular corpus of the fossil hominid taxa Australopithecus africanus and Paranthropus robustus. The mandibles of extant great apes, modern humans, and the fossil hominids are examined by computed tomography (CT), and compact bone contours are used to calculate cross-sectional biomechanical properties (cortical area, second moments of area, and Bredt's formula for torsional strength). The relative amount of compact bone is comparable in the modern and fossil mandibles, but the mechanical properties of A. africanus and P. robustus jaws are distinct in terms of the ratio of minimum to maximum second moments of area. This difference most likely represents a structural response to elevated torsional moments in the fossil hominids. Although the relative amount of compact bone in cross-section does not differ significantly between taxa by statistical criteria, A. africanus utilizes less cortical bone than P. robustus in the same manner in which Pongo is separated from the condition in other extant large-bodied hominoids. It has been suggested that the phenomenon of mandibular "robusticity" (expressed as an index of corpus breadth/corpus height) may be an effect of postcanine megadontia and/or reduced canine size in the australopithecines. Results presented here, however, indicate that it is unlikely that either factor adequately accounts for mandibular size and shape variation in early hominids.  相似文献   

13.
Proponents of the Multiregional Hypothesis of modern human origins have consistently stated that Australasia provides one of the most compelling examples of regional continuity in the human fossil record. According to these workers, features found in the earliest Homo erectus fossils from Sangiran, Central Java, can be traced through more advanced hominids from Ngandong and are found in fossil and recent Australian Aborigines. In order to test the hypothesis that a close evolutionary relationship exists amongst the fossils from Australasia, this study will examine the cranial base. This region of the skull is considered to be evolutionarily conservative and has relatively good representation and preservation throughout much of the Australasian record. The results of this project highlight a number of features on the cranial base in the Ngandong sample that appear to be unique not only within the region, but in the human fossil sample as a whole. Several of these features, such as the morphology of the foramen ovale, the location of the squamotympanic fissure in the roof of the temporomandibular fossa, and the extreme expression of the postcondyloid tuberosities have been pointed out by workers such as Weidenreich and Jacob in their surveys of this material. The presence of these characters in the Ngandong population, and their apparent lack of expression outside of this group, provides strong evidence of discontinuity in the Australasian fossil record.  相似文献   

14.
Efforts to test hypotheses about small-scale shifts in development (tinkering) that can only be observed in the fossil record pose many challenges. Here we use the origin of modern human craniofacial form to explore a series of analytical steps with which to propose and test evolutionary developmental hypotheses about the basic modules of evolutionary change. Using factor and geometric morphometric analyses of craniofacial variation in modern humans, fossil hominids, and chimpanzee crania, we identify several key shifts in integration (defined as patterns of covariation that result from interactions between components of a system) among units of the cranium that underlie the unique shape of the modern human cranium. The results indicate that facial retraction in modern humans is largely a product of three derived changes: a relatively longer anterior cranial base, a more flexed cranial base angle, and a relatively shorter upper face. By applying the Atchley-Hall model of morphogenesis, we show that these shifts are most likely the result of changes in epigenetic interactions between the cranial base and both the brain and the face. Changes in the size of the skeletal precursors to these regions may also have played some role. This kind of phenotype-to-genotype approach is a useful and important complement to more standard genotype-to-phenotype approaches, and may help to identify candidate genes involved in the origin of modern human craniofacial form.  相似文献   

15.
Aim To resolve the phylogeny of humans and their fossil relatives (collectively, hominids), orangutans (Pongo) and various Miocene great apes and to present a biogeographical model for their differentiation in space and time. Location Africa, northern Mediterranean, Asia. Methods Maximum parsimony analysis was used to assess phylogenetic relationships among living large‐bodied hominoids (= humans, chimpanzees, bonobos, gorillas, orangutans), and various related African, Asian and European ape fossils. Biogeographical characteristics were analysed for vicariant replacement, main massings and nodes. A geomorphological correlation was identified for a clade we refer to as the ‘dental hominoids’, and this correlation was used to reconstruct their historical geography. Results Our analyses support the following hypotheses: (1) the living large‐bodied hominoids represent a monophyletic group comprising two sister clades: humans + orangutans, and chimpanzees (including bonobos) + gorillas (collectively, the African apes); and (2) the human–orangutan clade (dental hominoids) includes fossil hominids (Homo, australopiths, Orrorin) and the Miocene‐age apes Hispanopithecus, Ouranopithecus, Ankarapithecus, Sivapithecus, Lufengpithecus, Khoratpithecus and Gigantopithecus (also Plio‐Pleistocene of eastern Asia). We also demonstrate that the distributions of living and fossil genera are largely vicariant, with nodes of geographical overlap or proximity between Gigantopithecus and Sivapithecus in Central Asia, and between Pongo, Gigantopithecus, Lufengpithecus and Khoratpithecus in East Asia. The main massing is represented by five genera and eight species in East Asia. The dental hominoid track is spatially correlated with the East African Rift System (EARS) and the Tethys Orogenic Collage (TOC). Main conclusions Humans and orangutans share a common ancestor that excludes the extant African apes. Molecular analyses are compromised by phenetic procedures such as alignment and are probably based on primitive retentions. We infer that the human–orangutan common ancestor had established a widespread distribution by at least 13 Ma. Vicariant differentiation resulted in the ancestors of hominids in East Africa and various primarily Miocene apes distributed between Spain and Southeast Asia (and possibly also parts of East Africa). The geographical disjunction between early hominids and Asian Pongo is attributed to local extinctions between Europe and Central Asia. The EARS and TOC correlations suggest that these geomorphological features mediated establishment of the ancestral range.  相似文献   

16.
This paper examines differences in the processes by which the cranial base flexes in humans and extends in chimpanzees. In addition, we test the extent to which one can use comparisons of cranial base angles in humans and non-human primates to predict vocal tract dimensions. Four internal cranial base angles and one external cranial base angle were measured in a longitudinal sample of Homo sapiens and a cross-sectional sample of Pan troglodytes. These data show that the processes of cranial base angulation differ substantially in these species. While the human cranial base flexes postnatally in a rapid growth trajectory that is complete by two years, the cranial base in P. troglodytes extends postnatally in a more prolonged skeletal growth trajectory. These comparisons also demonstrate that the rate of cranial base angulation is comparable for different measures, but that angles which incorporate different anterior cranial base measurements correlate poorly. We also examined ontogenetic relationships between internal and external cranial base angles and vocal tract growth in humans to test the hypothesis that cranial base angulation influences pharyngeal dimensions and can, therefore, be used to estimate vocal tract proportions in fossil hominids. Our results indicate that internal and external cranial base angles are independent of the horizontal and vertical dimensions of the vocal tract. Instead, a combination of mandibular and palatal landmarks can be used to predict dimensions of the vocal tract in H. sapiens. The developmental contrasts in cranial base angulation between humans and non-human primates may have important implications for testing hypotheses about the relationship between cranial base flexion and other craniofacial dimensions in hominid evolution.  相似文献   

17.
Reconstruction of life history variables of fossil hominids on the basis of dental development requires understanding of and comparison with the pattern and timing of dental development among both living humans and pongids. Whether dental development among living apes or humans provides a better model for comparison with that of Plio-Pleistocene hominids of the genus Australopithecus remains a contentious point. This paper presents new data on chimpanzees documenting developmental differences in the dentitions of modern humans and apes and discusses their significance in light of recent controversies over the human or pongid nature of australopithecine dental development. Longitudinal analysis of 299 lateral head radiographs from 33 lab-reared chimpanzees (Pan troglodytes) of known chronological age allows estimation of means and standard deviations for the age at first appearance of 8 developmental stages in the mandibular molar dentition. Results are compared with published studies of dental development among apes and with published standards for humans. Chimpanzees are distinctly different from humans in two important aspects of dental development. Relative to humans, chimpanzees show advanced molar development vis a vis anterior tooth development, and chimpanzees are characterized by temporal overlap in the calcification of adjacent molar crowns, while humans show moderate to long temporal gaps between the calcification of adjacent molar crowns. In combination with recent work on enamel incremental markers and CAT scans of developing dentitions of Plio-Pleistocene hominids, this evidence supports an interpretation of a rapid, essentially “apelike” ontogeny among australopithecines. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Molecular data suggest that humans are more closely related to chimpanzees than either is to the gorillas, yet one finds the closest similarity in craniofacial morphology to be among the great apes to the exclusion of humans. To clarify how and when these differences arise in ontogeny, we studied ontogenetic trajectories for Homo sapiens, Pan paniscus, Pan troglodytes, Gorilla gorilla and Pongo pygmaeus. A total of 96 traditional three-dimensional landmarks and semilandmarks on the face and cranial base were collected on 268 adult and sub-adult crania for a geometric morphometric analysis. The ontogenetic trajectories are compared by various techniques, including a new method, relative warps in size-shape space. We find that adult Homo sapiens specimens are clearly separated from the great apes in shape space and size-shape space. Around birth, Homo sapiens infants are already markedly different from the great apes, which overlap at this age but diverge among themselves postnatally. The results suggest that the small genetic differences between Homo and Pan affect early human ontogeny to induce the distinct adult human craniofacial morphology. Pure heterochrony does not sufficiently explain the human craniofacial morphology nor the differences among the African apes.  相似文献   

19.
It has been suggested that patterns of craniodental variation in living hominids (Gorilla, Homo, Pan, and Pongo) may be useful for evaluating variation in fossil hominid assemblages. Using this approach, a fossil sample exhibiting a pattern of variation that deviates from one shared among living taxa would be regarded as taxonomically heterogeneous. Here we examine patterns of tooth crown size and shape variation in great apes and humans to determine 1) if these taxa share a pattern of dental variation, and 2) if such a pattern can reliably discriminate between samples that contain single species and those that contain multiple species. We use parametric and nonparametric correlation methods to establish the degree of pattern similarity among taxa, and randomization tests to assess their statistical significance. The results of this study show that extant hominids do not share a pattern of dental size variation, and thus these taxa cannot be used to generate expectations for patterns of size variation in fossil hominid species. The hominines (Gorilla, Homo, and Pan) do share a pattern of shape variation in the mandibular dentition; however, Pongo is distinct, and thus it is unclear which, if either, pattern should be expected in fossil hominids. Moreover, in this case, most combined-species samples exhibit patterns of shape variation that are similar to those for single hominine species samples. Thus, although a common pattern of shape variation is present in the mandibular dentition, it is not useful for recognizing taxonomically mixed paleontological samples.  相似文献   

20.
Position and orientation of the foramen magnum in higher primates   总被引:1,自引:0,他引:1  
The location of the foramen magnum, with respect to the longitudinal axis of the cranium, and its orientation with respect to the Frankfurt Horizontal, have been studied in a total of 328 modern human and Pan crania. The samples were chosen in order to examine the effect of overall size difference on foramen magnum disposition. Foramen position (expressed as three indices) and inclination are relatively invariant among the modern human samples, but the foramen magnum is consistently, and statistically significantly, more anteriorly located in Pan paniscus than in Pan troglodytes. Sexual dimorphism is virtually non-existent. There is an apparent allometric effect on foramen position, but not on inclination, so that larger crania in the modern human and Pan paniscus samples tend to have more posteriorly situated foramina. The disposition of the foramen is unrelated to cranial base angle or facial prognathism, except that in Pan paniscus its relative anterior location is linked with the more flexed cranial base in that species. These results provide a comparative context for the examination of differences in foramen magnum disposition in fossil hominids. Differences in foramen magnum position and orientation between KNM-ER 1813 and A. africanus are most unlikely to be due to within-taxon variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号