首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Macrophage migration inhibitory factor (MIF) is a glycosylated multi-functional protein that acts as an enzyme as well as a cytokine. MIF mediates its actions through a cell surface class II major histocompatibility chaperone, CD74 and co-receptors such as CD44, CXCR2, CXCR4 or CXCR7. MIF has been implicated in the pathogenesis of several acute and chronic inflammatory diseases. Although MIF is a molecule of biomedical importance, a public resource of MIF signaling pathway is currently lacking. In view of this, we carried out detailed data mining and documentation of the signaling events pertaining to MIF from published literature and developed an integrated reaction map of MIF signaling. This resulted in the cataloguing of 68 molecules belonging to MIF signaling pathway, which includes 24 protein-protein interactions, 44 post-translational modifications, 11 protein translocation events and 8 activation/inhibition events. In addition, 65 gene regulation events at the mRNA levels induced by MIF signaling have also been catalogued. This signaling pathway has been integrated into NetPath (http://www.netpath.org), a freely available human signaling pathway resource developed previously by our group. The MIF pathway data is freely available online in various community standard data exchange formats. We expect that data on signaling events and a detailed signaling map of MIF will provide the scientific community with an improved platform to facilitate further molecular as well as biomedical investigations on MIF.  相似文献   

3.
Oxytocin, a nine amino acid long neuropeptide hormone, is synthesized in the hypothalamus and stored and released from the neural lobe of the pituitary gland. Although commonly known for its central role in the regulation of parturition and lactation, oxytocin signaling also plays a key role in modulating social behavior, evoking contentment, initiating maternal behavior, inducing trust, generosity and bonding in humans and animals. Oxytocin signaling can prove to be of great importance in therapeutics and drug targeting because of its diverse range of actions. However, a well annotated map of oxytocin signaling pathway is currently lacking in the publicly available pathway resources. Therefore, we systematically curated the available signaling information of oxytocin from published literature and collated the data to develop a more complete map. We cataloged 66 molecules belonging to oxytocin signaling pathway, which included 9 protein-protein interactions, 39 post-translational modifications, 14 protein translocation events and 22 activation/inhibition events. Further, Oxytocin signaling network data is made freely available to academic fraternity by integrating this into NetPath (http://www.netpath.org/), a freely available human signaling pathway resource developed previously by our group.  相似文献   

4.
Background: Cigarette smoke induces inflammation and remodels immune response. Genetic and epigenetic alterations might be involved in the pathogenesis of smoking related diseases. In this study, we investigated the effect of smoking on systemic inflammation biomarkers and epigenetic changes at microRNA (miRNA) expression level. We also examined if the levels of inflammatory biomarkers were associated with selected single nucleotide polymorphisms (SNPs).

Method: From 39 smokers and 101 non-smokers, levels of total white blood cells (WBCs) and its subpopulations, plasma cytokines/chemokines/proteins and miRNAs were analysed. For three biomarkers, C-reactive protein (CRP), MCP-1 and IFN-γ that were affected by smoking, the influence of SNPs was analyzed.

Result: Elevated levels of total WBCs, neutrophils, monocytes, lymphocytes, CRP, MCP-1, IFN-γ and lower levels of miR-21 were detected in smokers. The elevated levels of IFN-γ in smokers was only statistically significantly associated with rs2069705 AG/GG SNP-genotype.

Conclusions: A lower level of oncomir miRNA-21 and a higher level of immune modelling cytokine IFN-γ detected in smokers could be a protective immune response to cigarette smoke. The higher level of IFN-γ in smokers with a specific SNP genotype also suggests that a genetic interaction with smoking might predict the pathobiology of smoking related disease.  相似文献   


5.
Purpose: The main goal of the present study was to determine DNA damage in pesticide-exposed greenhouse workers and pesticides non-exposed controls.

Materials and methods: The DNA damage was measured by alkaline comet assay method (pH?>?13) in 41 greenhouse workers and 45 non-exposed individuals as the control. Pesticide exposure was assessed by duration of working in the greenhouse and pesticide application in the greenhouse time. DNA damage was estimated by arbitrary unit and damage frequency.

Results: Arbitrary unit and damage frequency were consistently significantly higher in greenhouse workers than those of the controls (p?=?0.001). In terms of gender in greenhouse, DNA damage of female workers was significantly higher than those in male workers (p?<?0.05). We found significant correlation between DNA damage and working hours spent. Multiple linear regression analysis showed that working hours in the greenhouse as an indication of pesticide exposure were significantly associated with the DNA damage, which can be attributed to the genotoxic potential of the pesticide mixture.

Conclusions: The comet assay is sensitive to detect the damage exposed to chronic effect of pesticides in greenhouse workers. Significant DNA damage was obtained for the exposed group, which was associated with the pesticide exposure.  相似文献   


6.
A new species of Euchondrus, Euchondrus adwani n. sp., is described from Syria. It is morphologically similar to E. desertorum Rochanaburananda in Forcart, 1981 Forcart, L. (1981): Neubeschreibungen von Landschnecken aus Palästina. Basteria, 45, 97108. [Google Scholar], which is endemic to the Negev desert.

http://www.zoobank.org/urn:lsid:zoobank.org:pub:C030F4D1-D722-4186-BA7B-EACCF9BFA563  相似文献   

7.
The components of receptor tyrosine kinase signaling complexes help to define the specificity of the effects of their activation. The Caenorhabditis elegans fibroblast growth factor receptor (FGFR), EGL-15, regulates a number of processes, including sex myoblast (SM) migration guidance and fluid homeostasis, both of which require a Grb2/Sos/Ras cassette of signaling components. Here we show that SEM-5/Grb2 can bind directly to EGL-15 to mediate SM chemoattraction. A yeast two-hybrid screen identified SEM-5 as able to interact with the carboxy-terminal domain (CTD) of EGL-15, a domain that is specifically required for SM chemoattraction. This interaction requires the SEM-5 SH2-binding motifs present in the CTD (Y1009 and Y1087), and these sites are required for the CTD role of EGL-15 in SM chemoattraction. SEM-5, but not the SEM-5 binding sites located in the CTD, is required for the fluid homeostasis function of EGL-15, indicating that SEM-5 can link to EGL-15 through an alternative mechanism. The multi-substrate adaptor protein FRS2 serves to link vertebrate FGFRs to Grb2. In C. elegans, an FRS2-like gene, rog-1, functions upstream of a Ras/MAPK pathway for oocyte maturation but is not required for EGL-15 function. Thus, unlike the vertebrate FGFRs, which require the multi-substrate adaptor FRS2 to recruit Grb2, EGL-15 can recruit SEM-5/Grb2 directly.FIBROBLAST growth factors (FGFs) play important roles in many developmental and physiological processes, including cell migration, angiogenesis, proliferation, differentiation, and survival (Ornitz and Itoh 2001; Polanska et al. 2009). Mammals have a battery of both FGF ligands and high-affinity receptors to carry out this diverse set of important functions. These ligands and their receptors are generated from a set of 18 genes encoding FGFs and 4 genes encoding their receptors (Eswarakumar et al. 2005). Upon ligand binding, fibroblast growth factor receptors (FGFRs) dimerize, activating their intrinsic tyrosine kinase activity, which causes both autophosphorylation on intracellular tyrosine residues and phosphorylation of additional substrates (Eswarakumar et al. 2005). These phosphorylation events lead to the assembly of a signaling complex around the activated receptor, ultimately promoting various downstream signaling pathways (Eswarakumar et al. 2005).A large portion of mammalian FGFR signaling is mediated by the multi-substrate adaptor protein FRS2/snt-1 (Kouhara et al. 1997; Hadari et al. 1998, 2001; Lax et al. 2002; Gotoh et al. 2005). FRS2 constitutively associates with the juxtamembrane region of the FGFR via its amino-terminal PTB domain (Xu et al. 1998; Ong et al. 2000). Upon FGFR activation, FRS2 becomes heavily phosphorylated, allowing it to recruit Grb2 and Shp2 via their SH2 domains (Kouhara et al. 1997; Eswarakumar et al. 2005). Since these components cannot associate with the receptor in the absence of FRS2 (Hadari et al. 2001), FRS2 serves as an essential link between the activated receptor and many downstream signal transduction pathways.The understanding of FGF-stimulated signal transduction pathways has been aided by the study of FGF signaling in model organisms. Powerful genetic screens and the reduced complexity of the set of FGFs and their receptors in both Drosophila melanogaster and Caenorhabditis elegans have helped promote an understanding of the conserved aspects of FGF signaling pathways (Huang and Stern 2005; Polanska et al. 2009). In C. elegans, FGF signaling is mediated by two FGF ligands, EGL-17 and LET-756, and a single FGF receptor, EGL-15 (DeVore et al. 1995; Burdine et al. 1997; Roubin et al. 1999). The EGL-15 FGFR is structurally very similar to mammalian FGF receptors, with the highest level of sequence conservation found within the intracellular tyrosine kinase domain and the three extracellular immunoglobulin (IG) domains.Similar to mammalian FGFRs, alternative splicing also generates functionally distinct EGL-15 isoforms. A major structural difference between EGL-15 and other FGFRs lies in an additional domain located between the first IG domain and the acid box of EGL-15. This EGL-15-specific insert is encoded by a pair of mutually exclusive fifth exons, generating two EGL-15 isoforms, 5A and 5B, with different functions (Goodman et al. 2003). Alternative splicing also affects the sequence at the very end of the carboxy-terminal domain (CTD) of EGL-15 (Goodman et al. 2003), giving rise to four distinct C-terminal isoform types, referred to as types I–IV (see Figure 1A).Open in a separate windowFigure 1.—The SEM-5∷EGL-15 interaction is dependent upon the SEM-5 SH2 binding sites in the CTD of EGL-15. (A) Important residues in the EGL-15 CTD isoforms. The C-terminal portion of the kinase domain and the CTD are shown. The gray box is common to all C-terminal isoforms. Sequences of the CTD isoforms can be found in Figure S5. (B) SEM-5 binds directly to EGL-15 Y1009 and Y1087. A full-length SEM-5 prey was mated to eight EGL-15 baits: empty vector control (pBTM116) and derivatives containing variants of either the type I or the type IV EGL-15(Intra). Growth is an indication of an interaction between SEM-5 and the EGL-15 bait. Dilutions of the culture mixture are indicated above. hFGFR1, a bait containing the corresponding portion of the intracellular domain of the human FGFR1. Similar results were obtained using the human SEM-5 ortholog, Grb2.EGL-15, like its mammalian orthologs, is also involved in a large variety of functions, including cell migration guidance affecting the sex myoblast (SM) (Stern and Horvitz 1991; DeVore et al. 1995; Goodman et al. 2003) and CAN cells (Fleming et al. 2005), muscle arm extension (Dixon et al. 2006), a number of processes controlling terminal axon morphology (Bulow et al. 2004), muscle protein degradation (Szewczyk and Jacobson 2003), and fluid homeostasis (Huang and Stern 2004). A conserved FGFR signaling pathway in C. elegans was established by identifying the genes necessary for the role of EGL-15 in fluid homeostasis, and much of this same pathway is utilized in other functions of EGL-15 (DeVore et al. 1995; Borland et al. 2001; Huang and Stern 2004, 2005). The identification of these genes was facilitated by a temperature-sensitive mutation affecting a receptor tyrosine phosphatase, CLR-1 (CLeaR), which functions to negatively regulate EGL-15 signaling (Kokel et al. 1998). Mutations in clr-1 abolish this regulatory constraint on EGL-15, resulting in fluid accumulation in the pseudocoelomic cavity due to hyperactive EGL-15 signaling. The buildup of this clear fluid, resulting in the Clr phenotype, is easily scored and can be used to identify suppressors (soc, suppressor of Clr) that reduce EGL-15 signaling efficiency. These suppressors define an EGL-15 signaling pathway necessary for fluid homeostasis, which involves the activation of the Ras/MAPK cascade via the SEM-5/Grb2 adaptor protein, the let-341/sos-1 Sos-like guanine nucleotide exchange factor, and a PTP-2-SOC-1/Shp2-Gab1 cassette (Borland et al. 2001).Mutations in egl-15 have been identified on the basis of their effects on either fluid homeostasis or the guidance of the migrating SMs (DeVore et al. 1995; Goodman et al. 2003). Most of these alleles fall into an allelic series and affect the general aspects of EGL-15 signaling (Goodman et al. 2003). The strongest of these alleles confers an early larval arrest phenotype, whereas weaker alleles confer either a scrawny body morphology (Scr) or just the ability to suppress the Clr phenotype (Soc). While the weakest of these alleles does not affect egg laying, more highly compromised mutants show an egg-laying defect due to the mispositioning of the SMs. Four egl-15 alleles specifically affect SM migration; when homozygous, these mutations cause dramatic mispositioning of the SMs, but do not cause a Soc phenotype (Goodman et al. 2003). Three of these are nonsense mutations in exon 5A and eliminate the 5A EGL-15 isoform. The phenotype of these mutants highlights the specific requirement of the 5A isoform for SM migration guidance. The fourth mutation in this class, egl-15(n1457), is a nonsense mutation that truncates the carboxy-terminal domain, specifically implicating the CTD in SM migration guidance.Immediately following their birth at the end of the first larval stage (L1), the two bilaterally symmetric SMs undergo anteriorly directed migrations to final positions that flank the precise center of the gonad (Sulston and Horvitz 1977). In the middle of the third larval stage, the SMs divide to generate 16 cells that differentiate into the egg-laying muscles. Multiple mechanisms help guide the migrations of the SMs (Chen and Stern 1998; Branda and Stern 2000), including a chemoattraction mediated by EGL-15 that guides the SMs to their precise final positions (Burdine et al. 1998). The EGL-17 FGF serves as the chemoattractive cue, emanating from central gonadal cells (Branda and Stern 2000). In the absence of this chemoattraction, SMs are posteriorly displaced (Stern and Horvitz 1991). While mispositioned SMs still generate sex muscles, these muscles end up too far posterior to attach properly, causing the animal to be defective in egg laying (Egl).The signal transduction pathway downstream of EGL-15 that mediates SM chemoattraction is not well established. Several lines of evidence implicate SEM-5/Grb2, LET-341/Sos, and LET-60/Ras in SM chemoattraction. The roles of components in the Ras-MAPK cascade in this event are less clear (Sundaram et al. 1996; Chen et al. 1997; Chen and Stern 1998). A crucial gap in our understanding lies in the link between activated EGL-15 and the downstream signaling components. Here we show that SEM-5, the C. elegans GRB2 ortholog, appears to bind directly to SH2 binding sites within the carboxy terminal tail of EGL-15. These interactions are required for SM chemoattraction, but not for the essential function of EGL-15.  相似文献   

8.
Animals search for foods and decide their behaviors according to previous experience. Caenorhabditis elegans detects chemicals with a limited number of sensory neurons, allowing us to dissect roles of each neuron for innate and learned behaviors. C. elegans is attracted to salt after exposure to the salt (NaCl) with food. In contrast, it learns to avoid the salt after exposure to the salt without food. In salt-attraction behavior, it is known that the ASE taste sensory neurons (ASEL and ASER) play a major role. However, little is known about mechanisms for learned salt avoidance. Here, through dissecting contributions of ASE neurons for salt chemotaxis, we show that both ASEL and ASER generate salt chemotaxis plasticity. In ASER, we have previously shown that the insulin/PI 3-kinase signaling acts for starvation-induced salt chemotaxis plasticity. This study shows that the PI 3-kinase signaling promotes aversive drive of ASER but not of ASEL. Furthermore, the Gq signaling pathway composed of Gqα EGL-30, diacylglycerol, and nPKC (novel protein kinase C) TTX-4 promotes attractive drive of ASER but not of ASEL. A putative salt receptor GCY-22 guanylyl cyclase is required in ASER for both salt attraction and avoidance. Our results suggest that ASEL and ASER use distinct molecular mechanisms to regulate salt chemotaxis plasticity.ANIMALS show various behaviors in response to environmental cues and modulate behaviors according to previous experience. To understand neuronal plasticity underlying learning, it is important to dissect neurons and molecules for sensing environmental stimuli, storing memory, and executing learned behaviors.The nematode Caenorhabditis elegans has only 302 neurons and functions of sensory neurons are well characterized (White et al. 1986; Bargmann 2006). C. elegans is attracted to odorants sensed by the AWC olfactory neurons or to salts sensed by the ASE gustatory neurons (Bargmann and Horvitz 1991; Bargmann et al. 1993). The ASE neuron class consists of a bilaterally symmetrical pair, ASE-left (ASEL) and ASE-right (ASER), which sense different sets of ions including Na+ and Cl, respectively (Pierce-Shimomura et al. 2001; Suzuki et al. 2008; Ortiz et al. 2009). ASEL is activated by an increase in salt concentration, whereas ASER is activated by a decrease in salt concentration (Suzuki et al. 2008). In the ASE gustatory neurons, a cyclic GMP (cGMP) signaling pathway mediates sensory transduction (Komatsu et al. 1996; Suzuki et al. 2008; Ortiz et al. 2009). ASEL and ASER express different sets of receptor-type guanylyl cyclases (gcys) (Ortiz et al. 2006). Of these, gcy-22, which is specifically expressed in ASER, is important for attraction to ASER-sensed ions such as Cl (Ortiz et al. 2009).Preference for salts changes according to previous experience (known as gustatory plasticity or salt chemotaxis learning) (Saeki et al. 2001; Jansen et al. 2002; Tomioka et al. 2006). When worms are grown on a medium that contains sodium chloride (NaCl) and food (Escherichia coli), they show attraction to NaCl by using ASE neurons (Bargmann and Horvitz 1991; Suzuki et al. 2008). In contrast, after exposure to the salt under starvation conditions, they show reduced attraction to or even avoid the salt (Saeki et al. 2001; Jansen et al. 2002; Tomioka et al. 2006). In C. elegans, it was proposed that preference for a sensory cue is defined by the sensory neuron that detects the cue (Troemel et al. 1997). ASE neurons play a major role for salt attraction (Bargmann and Horvitz 1991; Suzuki et al. 2008; Ortiz et al. 2009). However, little is known about sensory neurons that drive the learned salt avoidance; it remains unclear whether ASE neurons act as salt receptors for the learned avoidance.We have previously shown that an insulin/PI 3-kinase signaling pathway is essential for salt chemotaxis learning (Tomioka et al. 2006). In C. elegans, the insulin-like signaling is composed of daf-2, age-1, and akt-1, which encode homologs of insulin receptor, PI 3-kinase, and protein kinase B, respectively (Morris et al. 1996; Kimura et al. 1997; Paradis and Ruvkun 1998). Mutants of daf-2, age-1, and akt-1 show attraction to salt even after starvation/NaCl conditioning (Tomioka et al. 2006).daf-18 encodes a homolog of phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome ten), which dephosphorylates phosphatidylinositol (3,4,5)-triphosphate and counteracts the insulin/PI 3-kinase signaling (Ogg and Ruvkun 1998; Gil et al. 1999; Mihaylova et al. 1999; Rouault et al. 1999; Solari et al. 2005). Mutants of daf-18, in which the PI 3-kinase signaling is activated, show reduced attraction to NaCl even without conditioning. Since the insulin/PI 3-kinase signaling acts in ASER, we proposed that the insulin/PI 3-kinase signaling attenuates the attractive drive of ASER (Tomioka et al. 2006).In C. elegans, diacylglycerol (DAG) regulates functions of motor neurons and sensory neurons. egl-30, which encodes the α-subunit of heterotrimeric G-protein Gq, facilitates production of DAG and enhances locomotory movements (Brundage et al. 1996; Lackner et al. 1999). In the AWC olfactory neurons, a novel protein kinase C-ɛ/η (nPKC-ɛ/η) ortholog TTX-4 (also known as PKC-1), which is one of DAG targets, plays an essential role in attraction behavior to AWC-sensed odors (Okochi et al. 2005; Tsunozaki et al. 2008). GOA-1 Goα regulates olfactory adaptation by antagonizing Gqα–DAG signaling (Matsuki et al. 2006).This study investigated the involvement of the ASE taste receptor neurons in the starvation-induced salt avoidance. We show that both ASEL and ASER contribute to salt chemotaxis learning. Activation of the PI 3-kinase signaling and the Gq/DAG/PKC signaling acted antagonistically in reversal of ASER function, whereas these signaling pathways did not have prominent effects on ASEL function. In ASER, GCY-22 was required for both salt attraction and avoidance. These results suggest that ASE neurons are important for bidirectional chemotaxis and also suggest that distinct molecular mechanisms regulate functions of ASEL and ASER in salt chemotaxis learning.  相似文献   

9.
Background: Data from previous studies on the role of inflammatory cytokines as biomarkers for diabetic kidney disease (DKD) are contradictory. The association of a particular inflammatory cytokine single nucleotide polymorphism (SNP) with susceptibility to DKD has not been consistently replicated. We aimed to investigate the utility of inflammatory cytokines as biomarkers for DKD in type 2 diabetes mellitus (T2DM) patients. Association of inflammatory cytokine gene SNPs with the development of DKD was also explored.

Subjects and Methods: One hundred and fifty-nine Kuwaiti subjects were recruited in this study, including 50 T2DM patients without DKD, 67 diabetic DKD patients and 42 healthy subjects. Plasma levels of interleukin-6 (IL-6), IL-10, interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) were measured by enzyme-linked immunosorbent assays. Nine SNPs, including 2 SNPs in IL-6, 3 SNPs in IL-10, 1 SNP in IFN-γ and 3 SNPs in TNF-α, were genotyped using TaqMan SNP genotyping assays.

Results: Diabetic DKD patients showed higher IL-6, IL-10, IFN-γ and TNF-α levels than those without DKD. Diabetic DKD patients had a significantly higher frequency of IL-10???1082?A allele than those without DKD (p?=?0.001). No significant association of IL-6???174/?597 haplotypes with DKD risk was detected (p?=?0.188). Distribution of IL-10???592/?819/?1082 haplotypes differ significantly between T2DM patients with/without DKD (p?=?0.014). Diabetic DKD patients had a significantly lower frequency of IL-10???592C/?819C/?1082G haplotype than those without DKD (p?=?0.002).

Conclusions: Although inflammatory cytokine genotypes and, more importantly, haplotypes may have the potential to identify those patients at risk of DKD, hence, improving DKD predisposition prediction, further investigations regarding their real clinical significance is warranted in a large cohort of patients.  相似文献   


10.
Context: The metabolic function of peroxisome proliferator-activated receptor gamma (PPARγ) in lung cancer remains unclear.

Objectives: To determine the relationship of PPARγ on ALDH1A3-induced lipid peroxidation to inhibit lung cancer cell growth.

Materials and methods: In silico analysis using microarray dataset was performed to screen the positive correlation between PPARγ and all ALDH isoforms. NUBIscan software and ChIP assay were used to identify the binding sites (BSs) of PPARγ on ALDH1A3 promoter. The expression of ALDH1A3 under thiazolidinedione (TZD) treatment was evaluated by QPCR and Western Blot in HBEC and H1993 cell lines. Upon treatment of TZD, colony formation assay was used to check cell growth inhibition and 4-hydroxy-2-nonenal (4HNE) production as lipid peroxidation marker was determined by Western Blot in PPARγ positive cell H1993 and PPARγ negative cell H1299.

Results: Compared to other ALDH isoforms, ALDH1A3 showed the highest positive correlation to PPARγ expression. ALDH1A3 upregulated PPARγ expression while PPARγ activation suppressed ALDH1A3. Among 2 potential screened PPARγ response elements, BS 1 and 2 in the promoter of ALDH1A3 gene, PPARγ bound directly to BS2. Ligand activation of PPARγ suppressed mRNA and protein expression of ALDH1A3. Growth inhibition was observed in H1993 (PPARγ positive cell) treated with PPARγ activator and ALDH inhibitor compared to H1299 (PPARγ negative cell). PPARγ activation increased 4HNE which is known to be suppressed by ALDH1A3.

Conclusions: ALDH1A3 suppression could be one of PPARγ tumor suppressive function. This study provides a better understanding of the role of PPARγ in lung cancer.  相似文献   


11.
New earthworm samples from Cyprus are assessed and discussed. A re-evaluation of specimens previously relegated to the Southern Alpine species Perelia nematogena (Rosa, 1903), revealed two independent species: Perelia phoebea (Cognetti, 1913 Cognetti, L. (1913): Escursioni zoologiche del Dr. E. Festa nell’Isola di Rodi V. Oligocheti. Bollettino dei Musei di zoologia ed anatomia comparata della R. Università di Torino, 28, 16. [Google Scholar]) ,described originally from Rhodes Island, (Greece) and an undescribed species Perelia makrisi sp. n. The new species is similar also to the Levantine Pe. galileana Csuzdi &; Pavlí?ek, 2005 and corroborates the hypotheses that the autochthonous earthworm fauna of Cyprus is of Levantine origin.

http://www.zoobank.org/urn:lsid:zoobank.org:pub:FD1996DC-2FFC-42D5-A1D2-005B50E6FC64  相似文献   

12.
Context: Chronic liver damage has serious medical consequences.

Objective: To investigate the hepatoprotective effect of dry Zingiber officinale (ginger) and its essential (volatile) oil against diethylnitrosamine (DEN) toxicity in rats.

Materials and methods: Phenols and flavonoids components were characterized in dry ginger using HPLC-UV instrument while ginger essential oil (E.O.) was investigated via GC-MS technique. Antioxidant activity was determined in vitro. In rat model, ginger was administrated for 2 months. Lipid profile, antioxidant biomarkers, liver functions and histopathology were assessed.

Results: Chlorogenic acid (63.85?ppm) and hesperidin (156.91?ppm) are among the major phenolic and flavonoid constituents in dry ginger. Curcumene (15.21%) and linalool (13.47%) represent the main E.O. constituents. In rats treated with ginger E.O., a significant elevation in serum HDL (31.14%) was accompanied by a decrease in LDL (55.14%). A significant decrease in serum ALT and ALP was reported (56.85% and 53.84%, respectively). Serum GSH-Px activity has significantly increased 75.06%. Meanwhile, E.O. showed anticancer potential against HepG2 cell line (IC50?=?40?µg/mL). Liver histopathological examinations confirmed the protective effect against abnormalities.

Conclusion: Ginger was able to reduce the severity of DEN-cytotoxicity in rats, which suggests a novel antioxidant role originating from this medicinal plant.  相似文献   


13.
14.
Context: Osteoarthritis (OA) is a common chronic degenerative joint disease resulting in physical disability and reduced quality of life. Different biochemical signaling pathways are involved in the progression of OA, including the c-Jun NH2-terminal kinase (JNK) signal transduction pathway.

Objective: In this study, we have reviewed the recent updates on the association of JNK pathway with OA.

Methods: In this review, we have explored the databases like PubMed, Google Scholar, Medline, Scopus, etc., and collected the most relevant papers of JNK signaling pathway involved in the pathogenesis and therapeutics of OA

Results: JNK has been shown by scientific studies to be activated (phosphorylated) in OA that can play a key role in the cartilage destruction. Activation of JNK causes the phosphorylation of c-Jun that causes decreased proteoglycan synthesis and enhanced production of matrix metalloproteinase 13 (MMP-13). Overproduction of MMP-13 by chondrocytes plays a central role in cartilage degeneration in OA. Thus, targeting JNK pathway might be a promising therapeutic application for the prevention and treatment of OA. A number of JNK-inhibitors have been used in vitro and in vivo studies; however, not yet been translated into human use.

Conclusions: This review study indicates that JNK pathway plays an important role in development and progression of OA, and targeting the JNK pathway might be a potential approach for the treatment of OA in future.  相似文献   


15.
In the developing nervous system, cohorts of events regulate the precise patterning of axons and formation of synapses between presynaptic neurons and their targets. The conserved PHR proteins play important roles in many aspects of axon and synapse development from C. elegans to mammals. The PHR proteins act as E3 ubiquitin ligases for the dual-leucine-zipper-bearing MAP kinase kinase kinase (DLK MAPKKK) to regulate the signal transduction cascade. In C. elegans, loss-of-function of the PHR protein RPM-1 (Regulator of Presynaptic Morphology-1) results in fewer synapses, disorganized presynaptic architecture, and axon overextension. Inactivation of the DLK-1 pathway suppresses these defects. By characterizing additional genetic suppressors of rpm-1, we present here a new member of the DLK-1 pathway, UEV-3, an E2 ubiquitin-conjugating enzyme variant. We show that uev-3 acts cell autonomously in neurons, despite its ubiquitous expression. Our genetic epistasis analysis supports a conclusion that uev-3 acts downstream of the MAPKK mkk-4 and upstream of the MAPKAPK mak-2. UEV-3 can interact with the p38 MAPK PMK-3. We postulate that UEV-3 may provide additional specificity in the DLK-1 pathway by contributing to activation of PMK-3 or limiting the substrates accessible to PMK-3.CHEMICAL synapses are specialized cellular junctions that enable neurons to communicate with their targets. An electrical impulse causes calcium channel opening and consequently stimulates synaptic vesicles in the presynaptic terminals to fuse at the plasma membrane. Neurotransmitter activates receptors on the postsynaptic membrane and triggers signal transduction in the target cell. For this communication to occur efficiently, the organization of the proteins within these juxtaposed pre- and postsynaptic terminals must be tightly regulated (Jin and Garner 2008). Previous studies in Caenorhabditis elegans have identified RPM-1, a member of the conserved PHR (Pam/Highwire/RPM-1) family of proteins, as an important regulator for the synapse (Schaefer et al. 2000; Zhen et al. 2000). Recent functional studies of other PHR proteins have shown that they are also required for a number of steps during nervous system development including axon guidance, growth, and termination (Wan et al. 2000; D''souza; et al. 2005; Bloom et al. 2007; Grill et al. 2007; Lewcock et al. 2007; Li et al. 2008).The signaling cascades regulated by the PHR proteins have been identified using genetic modifier screens (Diantonio et al. 2001; Liao et al. 2004; Nakata et al. 2005; Collins et al. 2006) and biochemical approaches (Grill et al. 2007; Wu et al. 2007). These studies reveal that a major function of PHR proteins is to act as ubiquitin E3 ligases (Jin and Garner 2008). In C. elegans, RPM-1 (Regulator of Presynaptic Morphology-1) regulates the abundance of its substrate, the dual-leucine-zipper-bearing MAP kinase kinase kinase (DLK MAPKKK), and controls the activity of the MAP kinase cascade composed of three additional kinases, MAPKK MKK-4, p38 MAPK PMK-3, and MAPKAPK MAK-2 (Nakata et al. 2005; Yan et al. 2009). This signaling cascade further regulates the activity of the CCAAT/enhancer binding protein (C/EBP), CEBP-1, via a mechanism involving 3′-UTR-mediated mRNA decay.Signal transduction involving MAP kinases can be fine tuned using multiple mechanisms to ensure optimal signaling outputs (Raman et al. 2007). For example, scaffold proteins for MAP kinases can provide spatial regulation of kinase activation in response to different stimuli (Remy and Michnick 2004; Whitmarsh 2006). Small protein tags such as ubiquitin have also been shown to control the activation of kinases. Specifically, in the IKK pathway ubiquitination via Lys63 chain formation catalyzed by the Ubc13/Uev1a E2 complex and TRAF6 E3 ligase is required for TAK1 kinase activation (Skaug et al. 2009).To further the understanding of the DLK-1 pathway in the development of the nervous system, we characterized a new complementation group of rpm-1(lf) suppressors. These mutations affect the gene uev-3, a ubiquitin E2 conjugating (UBC) enzyme variant (UEV). UEV proteins belong to the UBC family, but lack the catalytic active cysteine necessary for conjugating ubiquitin (Sancho et al. 1998). The best characterized UEV proteins are yeast Mms2 and mammalian Uev1A, both of which act as the obligatory partner for the active E2 Ubc13 and function in DNA repair and IKB pathways, respectively (Deng et al. 2000; Hurley et al. 2006). In addition, UEV proteins, such as Tsg101, can also regulate endosomal trafficking (Babst et al. 2000). We find that similar to other members of the DLK-1 pathway, uev-3 functions cell autonomously in neurons. uev-3 genetically acts downstream of mkk-4 and upstream of mak-2. UEV-3 can bind PMK-3 in heterologous protein interaction assays. We hypothesize that UEV-3 may add specificity to the DLK-1 pathway by binding to PMK-3 for its activation or for selecting specific downstream targets.  相似文献   

16.
Two new harvestmen species of the family Phalangiidae, Rilaena caucasica sp. n. and Rilaena silhavyi sp. n. are diagnosed, illustrated, and described from the Caucasus region. Comparative illustration of the related Rilaena anatolica (Roewer, 1956), R. atrolutea (Roewer, 1915) and R. kelbajarica Snegovaya &; Pkhakadze, 2014 Snegovaya, N. Y., &; Pkhakadze, V. D. (2014): New species of the genus Rilaena (Opiliones, Phalangiidae) from the mount Gyamish, Azerbaijan. Vestnik zoologii, 48, 313318. doi: 10.2478/vzoo-2014-0037[Crossref] [Google Scholar] are given.

http://www.zoobank.org/urn:lsid:zoobank.org:pub:7B29FD94-45A2-4E32-A41E-3276E016410B  相似文献   

17.
18.
The Glacidorbidae, a family restricted to the Gondwanan realm (Tasmania, southeastern and southwestern Australia, and southern Argentina and Chile), previously included five genera with 20 identified species; 19 of them are Australian, with one genus and species, Gondwanorbis magallanicus (Meier-Brook & Smith, 1976 Meier-Brook, K. & Smith, B.J. (1976) Glacidorbis Iredale, 1943, a genus of freshwater prosobranchs with a Tasmanian-Southeast Australian-South Andean distribution. Archive für Molluskenkunde 106, 191198. [Google Scholar]), from South America. Here we describe two new species of Gondwanorbis: Gondwanorbis fueguensis n. sp. from the freshwater gastropods province of Southern Patagonia (Argentina) and Gondwanorbis tricarinatus n. sp. from Chile, and a new genus and species from the freshwater gastropods province of northern Patagonia (Argentina), Patagonorbis nahuelhuapensis n. sp and n. gen.

http://www./zoobank.org/urn:lsid:zoobank.org:pub:62EA0972-3AEF-4188-8E6D-F10895CE2BEF  相似文献   

19.
The Caenorhabditis elegans somatic gonad develops from a four-cell primordium into a mature organ that differs dramatically between the sexes in overall morphology (two arms in hermaphrodites and one in males) and in the cell types comprising it. Gonadal development in C. elegans is well studied, but regulation of sexual differentiation, especially later in gonadal development, remains poorly elucidated. To identify genes involved in this process, we performed a genome-wide RNAi screen using sex-specifically expressed gonadal GFP reporters. This screen identified several phenotypic classes, including ∼70 genes whose depletion feminized male gonadal cells. Among the genes required for male cell fate specification are Wnt/β-catenin pathway members, cell cycle regulators, and genes required for mitotic spindle function and cytokinesis. We find that a Wnt/β-catenin pathway independent of extracellular Wnt ligand is essential for asymmetric cell divisions and male differentiation during gonadal development in larvae. We also find that the cell cycle regulators cdk-1 and cyb-3 and the spindle/cytokinesis regulator zen-4 are required for Wnt/β-catenin pathway activity in the developing gonad. After sex is determined in the gonadal primordium the global sex determination pathway is dispensable for gonadal sexual fate, suggesting that male cell fates are promoted and maintained independently of the global pathway during this period.THE Caenorhabditis elegans gonad derives from a simple primordium of four cells that coalesces during embryogenesis and contains two somatic gonad precursors (SGPs), Z1 and Z4, flanking two germline precursors, Z2 and Z3 (Kimble and Hirsh 1979). The SGPs undergo very different developmental programs in each sex, involving sexually dimorphic cell lineages and migrations and sex-specific cellular differentiation. The result is a two-armed bilaterally symmetrical gonad in the adult hermaphrodite or a single-armed asymmetric gonad in the adult male. The high degree of sexual dimorphism of the mature organ and variety of cellular events that occur sex specifically during its development make the C. elegans gonad an outstanding model for sex-specific organogenesis.Development of the somatic gonad occurs in two phases. The early phase defines the gonadal axes and establishes the precursors of the major gonadal cell types. This takes place during the first larval stage (L1), beginning shortly after hatching with the first division of the SGPs. In both sexes SGP division is asymmetric in terms of both the sizes and the fates of the daughter cells, and establishes the proximal/distal axis of the gonad (Hirsh et al. 1976; Kimble and Hirsh 1979). The global sex determination pathway establishes the future sex of the gonad around the time of hatching (Klass et al. 1976; Nelson et al. 1978), and sexual dimorphism is already apparent when the SGPs divide: the size asymmetry of the SGP daughters is much more pronounced in males than hermaphrodites. In both sexes the asymmetry of the first SGP division requires a Wnt/β-catenin pathway. Mutations compromising this pathway cause a “symmetrical sisters” phenotype in which both daughters adopt the same fate (Miskowski et al. 2001; Siegfried and Kimble 2002; Phillips and Kimble 2009). Sex specificity is imposed on the SGPs by the global sex determining gene tra-1 (Hodgkin 1987) and the gonad-specific sex determining gene fkh-6 (Chang et al. 2004). These genes play opposing roles in SGP sex determination, with tra-1 feminizing and fkh-6 masculinizing the somatic gonad, and they also act redundantly to promote mitotic proliferation of the SGP lineage (Chang et al. 2004). SGP sex determination is linked to cell cycle progression by cyclin D, which is required to overcome repression of fkh-6 expression in the SGPs by E2F (Tilmann and Kimble 2005).The later phase of gonadal development involves the elongation of the gonad, together with cellular proliferation and differentiation, and lasts from L2 to adulthood. During L2 the somatic cells enlarge and leader cells (distal tip cells in the hermaphrodite, linker cell in the male) begin long-range migrations that extend the gonad. During L3, somatic gonad cell division resumes in both sexes, leading to the formation of differentiated somatic cell types by the end of L3 or beginning of L4. Gonadal morphogenesis is completed and gametogenesis begins during L4 (Kimble and Hirsh 1979).Although SGP division and much of hermaphrodite gonadal development have been well studied (Hubbard and Greenstein 2000), sexual cell fate specification in the somatic gonad is more poorly understood, particularly after the L1 stage. Despite the importance of fkh-6 in promoting male differentiation, it is expressed in males only during early L1 and null mutants have incomplete gonadal sex reversal. We have therefore performed a genome-wide RNAi screen to identify additional genes required after hatching for gonadal development in each sex. Among the advantages of this approach is the ability to identify gonadal regulators that also are essential for embryonic development. To our knowledge this is the first functional genomic study of gonadal sex differentiation.The screen identified many genes whose depletion disrupts gonadogenesis in each sex and nearly 70 genes whose depletion causes gonadal feminization in males. Prominent among this latter class were components of a Wnt/β-catenin pathway, cell cycle regulators, and genes involved in mitotic spindle function and cytokinesis. We find that Wnt/β-catenin activity continues in both sexes after SGP division and is required for male cell fate commitment in the gonad. We also find that the cyclin-dependent kinase cdk-1 and its cognate cyclin cyb-3 as well as the mitotic spindle regulator zen-4 are required for gonadal Wnt/β-catenin pathway activity, providing a potential new link between the cell cycle, asymmetric division, and sexual differentiation. The feminization caused by depletion of Wnt/β-catenin pathway components or cdk-1 is independent of the global sex determination pathway, suggesting that sexual fates in the male gonad remain plastic after the primary sex determination decision.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号