首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
Peripheral nerve sheath tumors from individuals with Neurofibromatosis Type 1 (NF1) are highly vascular and contain Schwann cells which are deficient in neurofibromin. This study examines the angiogenic expression profile of neurofibromin-deficient human Schwann cells relative to normal human Schwann cells, characterizing both pro-angiogenic and anti-angiogenic factors. Conditioned media from neurofibromin-deficient Schwann cell lines was pro-angiogenic as evidenced by its ability to stimulate endothelial cell proliferation and migration. Using gene array and protein array analysis, we found increased expression of pro-angiogenic factors and decreased expression of anti-angiogenic factors in neurofibromin-deficient Schwann cells relative to normal human Schwann cells. Neurofibromin-deficient Schwann cells also showed increased expression of several growth factor receptors and decreased expression of an integrin. We conclude that neurofibromin-deficient Schwann cells have dysregulated expression of pro-angiogenic factors, anti-angiogenic factors, growth factor receptors, and an integrin. These dysregulated molecules may contribute to the growth and progression of NF1 peripheral nerve sheath tumors.  相似文献   

2.
Angiogenesis, the formation of new blood vessels, is required for physiological development of vertebrates and repair of damaged tissue, but in the pathological setting contributes to progression of cancer. During tumor growth, angiogenesis is supported by up-regulation of angiogenic stimulators (pro-angiogenic) and down-regulation of angiogenic inhibitors (anti-angiogenic). The switch to the angiogenic phenotype (angiogenic switch) allows the tumors to grow and facilitate metastasis. The bioactive NC1 domain of type IV collagen alpha3 chain, called tumstatin, imparts anti-tumor activity by inducing apoptosis of proliferating endothelial cells. Tumstatin binds to alphaVbeta3 integrin via a mechanism independent of the RGD-sequence recognition and inhibits cap-dependent protein synthesis in the proliferating endothelial cells. The physiological level of tumstatin is controlled by matrix metalloproteinase-9, which most effectively cleaves it from the basement membrane and its physiological concentration in the circulation keeps pathological angiogenesis and tumor growth in check. These findings suggest that tumstatin functions as an endogenous inhibitor of pathological angiogenesis and functions as a novel suppressor of proliferating endothelial cells and growth of tumors.  相似文献   

3.
Tumor dormancy, a complex and still poorly understood phenomenon observed both in experimental models and in patients, has been associated with insufficient angiogenic capacity. A defined event, termed "angiogenic switch" and characterized by an imbalance between pro- and anti-angiogenic factors, often marks interruption of the dormant state, thus triggering invasive tumor growth. In our current view, sustained angiogenesis is considered essential in promoting this transition. Recently, we demonstrated that co-administration of proliferation-arrested Kaposi's sarcoma cells or recombinant angiogenic factors interrupts dormancy of poorly angiogenic leukemia cells by providing a brief angiogenic burst. These findings indicate that even a transient angiogenic switch can prime progressive tumor growth and suggest that tumor angiogenesis is a process requiring a higher amount of angiogenic factors for its induction than maintenance. Here we discuss the implications of these observations on our view of tumor angiogenesis and on the therapeutic potential of angiogenesis inhibitors.  相似文献   

4.
5.
The angiogenic switch during tumorigenesis is thought to be induced by a change in the balance of pro- angiogenic and anti-angiogenic factors. To elucidate the biological role of the endogenous angiogenesis inhibitor thrombospondin-2 (TSP-2) during multistep carcinogenesis, we subjected TSP-2-deficient and wild-type mice to a chemical skin carcinogenesis regimen. Surprisingly, TSP-2 expression was strongly upregulated in the mesenchymal stroma of wild-type mice throughout the consecutive stages of tumorigenesis whereas the angiogenesis factor, vascular endothelial growth factor, was induced predominantly in tumor cells. TSP-2 deficiency dramatically enhanced susceptibility to skin carcinogenesis and resulted in accelerated and increased tumor formation. The angiogenic switch occurred in early stages of pre-malignant tumor formation, and tumor angiogenesis was significantly enhanced in TSP-2-deficient mice. While TSP-2 deficiency did not affect tumor differentiation or proliferation, tumor cell apoptosis was significantly reduced. These results reveal upregulation of an endogenous angiogenesis inhibitor during multi step tumorigenesis and identify enhanced stromal TSP-2 expression as a novel host anti-tumor defense mechanism.  相似文献   

6.
The cysteine protease cathepsin S is highly expressed in malignant tissues. By using a mouse model of multistage murine pancreatic islet cell carcinogenesis in which cysteine cathepsin activity has been functionally implicated, we demonstrated that selective cathepsin S deficiency impaired angiogenesis and tumor cell proliferation, thereby impairing angiogenic islet formation and the growth of solid tumors, whereas the absence of its endogenous inhibitor cystatin C resulted in opposite phenotypes. Although mitogenic vascular endothelial growth factor, transforming growth factor-beta1, and the anti-angiogenic endostatin levels in either serum or carcinoma tissue extracts did not change in cathepsin S- or cystatin C-null mice, tumor tissue basic fibroblast growth factor and serum type 1 insulin growth factor levels were higher in cystatin C-null mice, and serum type 1 insulin growth factor levels were also increased in cathepsin S-null mice. Furthermore, cathepsin S affected the production of type IV collagen-derived anti-angiogenic peptides and the generation of bioactive pro-angiogenic gamma2 fragments from laminin-5, revealing a functional role for cathepsin S in angiogenesis and neoplastic progression.  相似文献   

7.
8.
Angiogenesis: a process of generation of new blood vessels has been proved to be necessary for sustained tumor growth and cancer progression. Inhibiting angiogenesis pathway has long been remained a significant hope for the development of novel, effective and target orientated antitumor agents arresting the tumor proliferation and metastasis. The process of neoangiogenesis as a biological process is regulated by several pro- and anti-angiogenic factors, especially vascular endothelial growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor 1 and transforming growth factor. Every endothelial cell destined for vessel formation is equipped with receptors for these angiogenic peptides. Moreover, numerous other angiogenic cytokines such as platelet derived growth factor (PGDF), placenta growth factor (PGF), nerve growth factor (NGF), stem-cell factor (SCF), and interleukins-2, 4, 6 etc. These molecular players performs critical role in regulating the angiogenic switch. Couple of decade's research in molecular aspects of tumor biology has unraveled numerous structural and functional mysteries of these angiogenic peptides. In present article, a detailed update on the functional and structural peculiarities of the various angiogenic peptides is described focusing on structural opportunities made available that has potential to be used to modulate function of these angiogenic peptides in developing therapeutic agents targeting neoplastic angiogenesis. The data may be useful in the mainstream of developing novel anticancer agents targeting tumor angiogenesis. We also discuss major therapeutic agents that are currently used in angiogenesis associated therapies as well as those are subject of active research or are in clinical trials.  相似文献   

9.
Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA3.1 empty vector, pcDNA3.1-VEGF111b or pcDNA3.1-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.  相似文献   

10.
11.
Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40ng/ml in the culture medium, but decreased at 80ng/ml. Under CoCl(2)-induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or anti-angiogenic activities of BMSCs.  相似文献   

12.
The incidence of breast cancer is increasing in the Western world and there is an urgent need for studies of the mechanisms of sex steroids in order to develop novel preventive strategies. Diet modifications may be among the means for breast cancer prevention. Angiogenesis, key in tumor progression, is regulated by the balance between pro- and anti-angiogenic factors, which are controlled in the extracellular space. Sampling of these molecules at their bioactive compartment is therefore needed. The aims of this study were to explore if tamoxifen, one of the most used anti-estrogen treatments for breast cancer affected some of the most important endogenous angiogenesis regulators, vascular endothelial growth factor (VEGF), angiogenin, and endostatin in normal breast tissue in vivo and if a diet supplementation with flaxseed had similar effects as tamoxifen in the breast. Microdialysis was used for in situ sampling of extracellular proteins in normal breast tissue of women before and after six weeks of tamoxifen treatment or before and after addition of 25 g/day of ground flaxseed to the diet or in control women. We show significant correlations between estradiol and levels of VEGF, angiogenin, and endostatin in vivo, which was verified in ex vivo breast tissue culture. Moreover, tamoxifen decreased the levels of VEGF and angiogenin in the breast whereas endostatin increased significantly. Flaxseed did not alter VEGF or angiogenin levels but similar to tamoxifen the levels of endostatin increased significantly. We conclude that one of the mechanisms of tamoxifen in normal breast tissue include tipping of the angiogenic balance into an anti-angiogenic state and that flaxseed has limited effects on the pro-angiogenic factors whereas the anti-angiogenic endostatin may be modified by diet. Further studies of diet modifications for breast cancer prevention are warranted.  相似文献   

13.
Vascular endothelial growth factor (VEGF) plays a dominant role in angiogenesis. While inhibitors of the VEGF pathway are approved for the treatment of a number of tumor types, the effectiveness is limited and evasive resistance is common. One mechanism of evasive resistance to inhibition of the VEGF pathway is upregulation of other pro-angiogenic factors such as fibroblast growth factor (FGF) and epidermal growth factor (EGF). Numerous in vitro assays examine angiogenesis, but many of these assays are performed in media or matrix with multiple growth factors or are driven by VEGF. In order to study angiogenesis driven by other growth factors, we developed a basal medium to use on a co-culture cord formation system of adipose derived stem cells (ADSCs) and endothelial colony forming cells (ECFCs). We found that cord formation driven by different angiogenic factors led to unique phenotypes that could be differentiated and combination studies indicate dominant phenotypes elicited by some growth factors. VEGF-driven cords were highly covered by smooth muscle actin, and bFGF-driven cords had thicker nodes, while EGF-driven cords were highly branched. Multiparametric analysis indicated that when combined EGF has a dominant phenotype. In addition, because this assay system is run in minimal medium, potential proangiogenic molecules can be screened. Using this assay we identified an inhibitor that promoted cord formation, which was translated into in vivo tumor models. Together this study illustrates the unique roles of multiple anti-angiogenic agents, which may lead to improvements in therapeutic angiogenesis efforts and better rational for anti-angiogenic therapy.  相似文献   

14.
Tumor growth and progression are critically dependent on the establishment of a vascular support system. This is often accomplished via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. VEGF ligands are overexpressed in a wide variety of solid tumors and therefore have inspired optimism that inhibition of the different axes of the VEGF pathway—alone or in combination—would represent powerful anti-angiogenic therapies for most cancer types. When considering treatments that target VEGF and its receptors, it is difficult to tease out the differential anti-angiogenic and anti-tumor effects of all combinations experimentally because tumor cells and vascular endothelial cells are engaged in a dynamic cross-talk that impacts key aspects of tumorigenesis, independent of angiogenesis. Here we develop a mathematical model that connects intracellular signaling responsible for both endothelial and tumor cell proliferation and death to population-level cancer growth and angiogenesis. We use this model to investigate the effect of bidirectional communication between endothelial cells and tumor cells on treatments targeting VEGF and its receptors both in vitro and in vivo. Our results underscore the fact that in vitro therapeutic outcomes do not always translate to the in vivo situation. For example, our model predicts that certain therapeutic combinations result in antagonism in vivo that is not observed in vitro. Mathematical modeling in this direction can shed light on the mechanisms behind experimental observations that manipulating VEGF and its receptors is successful in some cases but disappointing in others.  相似文献   

15.
S-adenosylmethionine decarboxylase is a key enzyme in the biosynthesis of polyamines essential for cell proliferation. Overexpression of S-adenosylmethionine decarboxylase in rodent fibroblasts led to aggressive transformants (Amdc-s cells) that had unforeseen high invasive capacity in nude mice, invading rapidly from the subcutaneous injection site into the peritoneal cavity and its organs. In vitro, these cells were much more invasive than Ras-oncogene-transformed fibroblasts, or human HT-1080 fibrosarcoma and MDA-MB-231 breast cancer cells. In immunohistological characterization, Amdc-s-induced tumors showed chaotic neovascularization, with abundant pleomorphic vessel-like structures that had noncontiguous or totally missing laminin (basement membrane) and CD31 (endothelial cell) immunoreactivity. Gene expression and protein analyses of Amdc-s cells showed them to overexpress several pro-angiogenic molecules, including vascular endothelial growth factor (VEGF-A), and to exhibit profound down-regulation of the anti-angiogenic thrombospondin-1 (TSP-1). By reintroduction of TSP-1 into Amdc-s cells, the high invasiveness was efficiently inhibited in vitro. Interestingly, Amdc-s cells showed up-regulation of hepatocyte growth factor (HGF) and also expressed the MET receptor, creating thus an autocrine loop able to regulate VEGF-A and TSP-1 levels. Further, we found Amdc-s cells to express increased amounts of matrix metalloproteinase-2 (MMP-2) and the large isoform of tenascin-C (TN-C), which may also contribute to the angiogenic switch and invasiveness. Consequently, Amdc-s cells offer an excellent model to sort out the key molecules of aggressive tumor growth, and thereby help in designing rational, novel anti-vascular and other cancer therapies.  相似文献   

16.
Yue F  Zhang GP  Jin HM 《生理学报》2006,58(2):124-128
本文研究了碱性成纤维细胞生长因子(basic fibroblast growth factor, bFGF)对小鼠脑微血管内皮细胞(microvascular endothelial cell, MVEC)株bEnd.3中血管新生相关基因表达谱的改变,并重点从mRNA、蛋白质和细胞水平检测bFGF对血管新生旁观分子环加氧酶-2(cyclooxygenase-2,COX-2)表达的影响。用特异性小鼠血管新生基因芯片高通量检测bEnd.3细胞基因谱表达的改变,分析促血管新生基因及抑制血管新生的基因表达谱的变化;用RT—PCR、Western blot、免疫细胞化学等方法分别从mRNA、蛋白质和细胞水平检测COX-2表达变化及细胞内的定位。结果发现用10ng/ml的bFGF刺激bEnd.3细胞2h后多种促血管新生基因表达明显上调,如Adamtsl、MMP-9、Ang-1、PDGFB、G—CSF、FGFl6、IGF-1等分别上调3、8、120、5.2、4.5、1.7、2.7倍。与此同时,多种抑制血管新生的基因表达相应下调,如TSP-3、TIMP-2、TGFβ1等表达分别下调3.4、1.5和3.5倍。RT-PCR和Western blot的结果证实,bFGF可以上调COX-2mRNA的表达和蛋白质的合成。免疫组化的结果表明,COX-2主要分布在胞浆。以上结果提示:bFGF具有上调促血管新生基因表达,下调抑制血管新生基因表达的作用,两者协同作用,促进血管新生。同时bFGF还可以明显促进血管新生旁观分子COX-2mRNA的表达和蛋白质的合成。本文讨论了bFGF引起MVEC内COX-2表达上调的意义。  相似文献   

17.
Redox signaling in vascular angiogenesis   总被引:19,自引:0,他引:19  
Angiogenesis is thought to be regulated by several growth factors (EGF, TGF-alpha, beta-FGF, VEGF). Induction of these angiogenic factors is triggered by various stresses. For instance, tissue hypoxia exerts its pro-angiogenic action through various angiogenic factors, the most notable being vascular endothelial growth factor, which has been mainly associated with initiating the process of angiogenesis through the recruitment and proliferation of endothelial cells. Recently, reactive oxygen species (ROS) have been found to stimulate angiogenic response in the ischemic reperfused hearts. Short exposure to hypoxia/reoxygenation, either directly or indirectly, produces ROS that induce oxidative stress which is associated with angiogenesis or neovascularization. ROS can cause tissue injury in one hand and promote tissue repair in another hand by promoting angiogenesis. It thus appears that after causing injury to the cells, ROS promptly initiate the tissue repair process by triggering angiogenic response.  相似文献   

18.
The zebrafish/tumor xenograft angiogenesis assay is used to approach tumor angiogenesis, a pivotal step in cancer progression and target for anti-tumor therapies. Here, we evaluated whether the assay could allow the identification of microRNAs having an anti-angiogenic potential. For that, we transfected DU-145 prostate cancer cells with four microRNAs (miR-125a, miR-320, miR-487b, miR-492) responsive to both anti- and pro-angiogenic stimuli applied to human umbilical vein endothelial cells. After transfection, DU-145 cells were injected close to the developing subintestinal vessels of transgenic Tg(Kdrl:eGFP)s843 zebrafish embryos that express green fluorescent protein under the control of Kdrl promoter. At 72 h post-fertilization, we observed that green fluorescent protein–positive neo-vessels infiltrated the graft of DU-145 transfected with miR-125a, miR-320, and miR-487b. Vice versa, neo-vessel formation and tumor cell infiltration were inhibited when DU-145 cells transfected with miR-492 were used. These results indicated that the zebrafish/tumor xenograft assay was adequate to identify microRNAs able to suppress the release of angiogenic growth factors by angiogenic tumor cells.

Electronic supplementary material

The online version of this article (doi:10.1007/s10616-014-9735-y) contains supplementary material, which is available to authorized users.  相似文献   

19.
Vascular endothelial growth factor (VEGF) is produced either as a pro-angiogenic or anti-angiogenic protein depending upon splice site choice in the terminal, eighth exon. Proximal splice site selection (PSS) in exon 8 generates pro-angiogenic isoforms such as VEGF165, and distal splice site selection (DSS) results in anti-angiogenic isoforms such as VEGF165b. Cellular decisions on splice site selection depend upon the activity of RNA-binding splice factors, such as ASF/SF2, which have previously been shown to regulate VEGF splice site choice. To determine the mechanism by which the pro-angiogenic splice site choice is mediated, we investigated the effect of inhibition of ASF/SF2 phosphorylation by SR protein kinases (SRPK1/2) on splice site choice in epithelial cells and in in vivo angiogenesis models. Epithelial cells treated with insulin-like growth factor-1 (IGF-1) increased PSS and produced more VEGF165 and less VEGF165b. This down-regulation of DSS and increased PSS was blocked by protein kinase C inhibition and SRPK1/2 inhibition. IGF-1 treatment resulted in nuclear localization of ASF/SF2, which was blocked by SPRK1/2 inhibition. Pull-down assay and RNA immunoprecipitation using VEGF mRNA sequences identified an 11-nucleotide sequence required for ASF/SF2 binding. Injection of an SRPK1/2 inhibitor reduced angiogenesis in a mouse model of retinal neovascularization, suggesting that regulation of alternative splicing could be a potential therapeutic strategy in angiogenic pathologies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号