首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several mollusc shells contain chitin, which is formed by a transmembrane myosin motor enzyme. This protein could be involved in sensing mechanical and structural changes of the forming, mineralizing extracellular matrix. Here we report the heterologous expression of the transmembrane myosin chitin synthase Ar-CS1 of the bivalve mollusc Atrina rigida (2286 amino acid residues, M.W. 264 kDa/monomer) in Dictyostelium discoideum, a model organism for myosin motor proteins. Confocal laser scanning immunofluorescence microscopy (CLSM), chitin binding GFP detection of chitin on cells and released to the cell culture medium, and a radiochemical activity assay of membrane extracts revealed expression and enzymatic activity of the mollusc chitin synthase in transgenic slime mold cells. First high-resolution atomic force microscopy (AFM) images of Ar-CS1 transformed cellulose synthase deficient D. discoideumdcsA cell lines are shown.  相似文献   

2.
The biosynthesis of chitin has been obtained in broken mycelia and protoplasts of the fungus Aspergillus fumigatus. The specific activity of chitin synthase (EC 2.4.1.16) in a membrane preparation from protoplasts derived from the hyphal tips of A. fumigatus was 26.8-fold greater than that of the chitin synthase in broken mycelia, indicating that the active chitin synthase is located primarily in a membrane-bound site at the hyphal tip. Polyoxin D was a potent competitive inhibitor of the enzyme, having Ki 5.2 +/- 0.8 micron with respect to the natural substrate UDP-N-acetyl-D-glucosamine, which has Km 1.58 mM.  相似文献   

3.
《Experimental mycology》1995,19(1):35-47
Polizeli, M. L. T. M., Noventa-Jordāo, M. A., Marques da Silva, M., Jorge, J. A., and Terenzi, H. F. 1995. (1,3)-β-D-Glucan synthase activity in mycelial and cell wall-less phenotypes of the fz, sg, os-1 ("slime") mutant strain of Neurospora crassa. Experimental Mycology 19, 35-47. The cell wall-less fz, sg, os-1 ("slime") triple mutant of Neurospora crassa lacks (1,3)-βD-glucan synthase activity. fz, sg, os-1 segregants from slime × wild-type crosses initially germinate as a plasmodium (slime-like), but develop hyphae in a few hours and acquire a stable mycelial phenotype (mycelial intermediate). The cell wall-less phenotype (stable slime) can be reisolated from mycelial intermediates by filtration-enrichment selection in medium of high osmolarity. Pairs of mycelial intermediate and stable slime obtained from a single slime-like segregant were comparatively studied. Mycelial intermediate strains synthesize a cell wall with normal amounts of (1,3)-β-glucan, chitin, and other polysaccharides and possess (1,3)-β-glucan synthase activity with apparently normal properties (i.e., association with membranes, stability, Km app, Vmax, stimulation by GTP). The enzyme was dissociated by treatment with Tergitol NP-40 and NaCl into a membrane-bound catalytic center and a soluble factor which activates the enzyme in the presence of GTP. Heterologous reconstitution assays demonstrated that stable slime spheroplasts had normal activity of the soluble activating factor, but were severely deficient in membrane-bound activity. The genetic composition of the viable progeny of stable slime or mycelial intermediate × wild-type crosses failed to show differences between the two extreme phenotypes of slime. However, the analysis of heterokaryons demonstrated that the stable slime homokaryotic progeny of stable slime/wild-type heterokaryons were not viable. In contrast, the behavior of mycelial intermediate/wild-type heterokaryons was normal. Apparently, stable slime strains differed from the original mycelial intermediate in a mutation(s) which arose spontaneously during the filtration-enrichment selection applied to mycelial intermediates in order to obtain the cell wall-less phenotype. This new trait impaired conidial germination and might be the actual cause of the loss of (1,3)-β-glucan synthase activity and cell wall.  相似文献   

4.
Gut chitin synthase was characterized and the sterols and ecdysteroids in the sugarcane rootstalk borer weevil, Diaprepes abbreviatus, were identified. An in vitro cell-free chitin synthase assay was developed using larval gut tissues from D. abbreviatus. Subcellular fractionation experiments showed that the majority of chitin synthase activity was located in 10,000g pellets. The gut chitin synthase requires Mg2+ to be fully active: 7–8-fold increases in activity were obtained with 10 mM Mg2+ present in reaction mixture. Calcium also stimulated activity (4–5-fold with 10 mM Ca2+), while Cu+2 completely inhibited at 1 mM. Other monovalent and divalent cations had little or no effect on activity. The pH and temperature optima were 7 and 25°C, respectively. Gut chitin synthesis was activated ca. 50% by trypsin treatments. GlcNAc stimulated chitin synthase activity, but Glc, GlcN and glycerin did not. Polyoxin D, UDP, and ADP inhibited the chitin synthase reaction with I50's of 75 μM, 2.3 mM, and 3.6 mM, respectively. Nikkomycin Z was a potent inhibitor of chitin synthase (91% inhibition at 10 μM). Tunicamycin and diflubenzuron had no effect on the enzyme. The apparent Km and Vmax for the gut chitin synthase were, respectively, 122.5 ± 7.4 μM and 426 ± 19.7 pmol/h/mg protein utilizing UDP-GlcNAc as the substrate. Sterol analyses indicated that cholesterol was the major dietary and larval sterol. HPLC/RIA data indicated that 20-hydroxyecdysone was the major molting hormone.  相似文献   

5.
The CAL1 gene was cloned by complementation of the defect in Calcofluor-resistant calR1 mutants of Saccharomyces cerevisiae. Transformation of the mutants with a plasmid carrying the appropriate insert restored Calcofluor sensitivity, wild-type chitin levels and normal spore maturation. Southern blots using the DNA fragment as a probe showed hybridization to a single locus. Allelic tests indicated that the cloned gene corresponded to the calR1 locus. The DNA insert contains a single open-reading frame encoding a protein of 1,099 amino acids with a molecular mass of 124 kD. The predicted amino acid sequence shows several regions of homology with those of chitin synthases 1 and 2 from S. cerevisiae and chitin synthase 1 from Candida albicans. calR1 mutants have been found to be defective in chitin synthase 3, a trypsin-independent synthase. Transformation of the mutants with a plasmid carrying CAL1 restored chitin synthase 3 activity; however, overexpression of the enzyme was not achieved even with a high copy number plasmid. Since Calcofluor-resistance mutations different from calR1 also result in reduced levels of chitin synthase 3, it is postulated that the products of some of these CAL genes may be limiting for expression of the enzymatic activity. Disruption of the CAL1 gene was not lethal, indicating that chitin synthase 3 is not an essential enzyme for S. cerevisiae.  相似文献   

6.
Abstract Membrane-bound chitin synthase, a key enzyme in chitin biosynthesis, had a specific requirement for phospholipid. The activity of the enzyme was enhanced 2.7-fold by adding phosphatidylinositol from porcine liver but not by other phospholipids. Each of the constituents of phospholipids inhibited enzyme activity at concentrations over 0.05%. Sterols and glycolipids had little effect on chitin synthase activation. Moreover, investigation using define species of phosphatidylcholine revealed that 1-palmytoyl-2-arachidoyl and 1-stearoyl-2-arachidoyl phosphatidylcholine activated the enzyme. In contrast to the arachidoyl acyl chain, other species having unsaturated fatty acyl chains inhibited enzyme activity at a concentration of 0.01%.  相似文献   

7.
The synthesis of chitin during germ-tube formation in Candida albicans may be regulated by the first and last steps in the chitin pathway: namely l-glutamine-d-fructose-6-phosphate aminotransferase and chitin synthase. Induction of germ-tube formation with either glucose and glutamine or serum was accompanied by a 4-fold increase in the specific activity of the aminotransferase. Chitin synthase in C. albicans is synthesized as a proenzyme. N-acetyl glucosamine increased the enzymic activity of the activated enzyme 3-fold and the enzyme exhibited positive co-operativity with the substrate, UDP-N-acetylglucosamine. Although chitin synthase was inhibited by polyoxin D (K i =1.2M) this antibiotic did not affect germination. During germ-tube formation the total chitin synthase activity increased 1.4-fold and the expressed activity (in vivo activated proenzyme) increased 5-fold. These results could account for the reported 5-fold increase in chitin content observed during the yeast to mycelial transformation.Non-Standard Abbreviations GlcNac N-acetyl glucosamine - UDP-GlcNac UDP-N-acetyl glucosamine - PMSF phenylmethylsulphonylfluoride  相似文献   

8.
Two chitin synthases in Saccharomyces cerevisiae   总被引:24,自引:0,他引:24  
Disruption of the yeast CHS1 gene, which encodes trypsin-activable chitin synthase I, yielded strains that apparently lacked chitin synthase activity in vitro, yet contained normal levels of chitin (Bulawa, C. E., Slater, M., Cabib, E., Au-Young, J., Sburlati, A., Adair, W. L., and Robbins, P. W. (1986) Cell 46, 213-225). It is shown here that disrupted (chs1 :: URA3) strains have a particulate chitin synthetic activity, chitin synthase II, and that wild type strains, in addition to chitin synthase I, have this second activity. Chitin synthase II is measured in wild type strains without preincubation with trypsin, the condition under which highest chitin synthase II activities are obtained in extracts from the chs1 :: URA3 strain. Chitin synthase II, like chitin synthase I, uses UDP-GlcNAc as substrate and synthesizes alkali-insoluble chitin (with a chain length of about 170 residues). The enzymes are equally sensitive to the competitive inhibitor Polyoxin D. The two chitin synthases are distinct in their pH and temperature optima, and in their responses to trypsin, digitonin, N-acetyl-D-glucosamine, and Co2+. In contrast to the report by Sburlati and Cabib (Sburlati, A., and Cabib, E. (1986) Fed. Proc. 45, 1909), chitin synthase II activity in vitro is usually lowered on treatment with trypsin, indicating that chitin synthase II is not activated by proteolysis. Chitin synthase II shows highest specific activities in extracts from logarithmically growing cultures, whereas chitin synthase I, whether from growing or stationary phase cultures, is only measurable after trypsin treatment, and levels of the zymogen do not change. Chitin synthase I is not required for alpha-mating pheromone-induced chitin synthesis in MATa cells, yet levels of chitin synthase I zymogen double in alpha factor-treated cultures. Specific chitin synthase II activities do not change in pheromone-treated cultures. It is proposed that of yeast's two chitin synthases, chitin synthase II is responsible for chitin synthesis in vivo, whereas nonessential chitin synthase I, detectable in vitro only after trypsin treatment, may not normally be active in vivo.  相似文献   

9.
Chitin synthase activity was studied in yeast and hyphal forms of Candida albicans. pH-activity profiles showed that yeast and hyphae contain a protease-dependent activity that has an optimum at pH 6.8. In addition, there is an activity that is not activated by proteolysis in vitro and which shows a peak at pH 8.0. This suggests there are two distinct chitin synthases in C. albicans. A gene for chitin synthase from C. albicans (CHS1) was cloned by heterologous expression in a Saccharomyces cerevisiae chs1 mutant. Proof that the cloned chitin synthase is a C. albicans membrane-bound zymogen capable of chitin biosynthesis in vitro was based on several criteria. (i) the CHS1 gene complemented the S. cerevisiae chs1 mutation and encoded enzymatic activity which was stimulated by partial proteolysis; (ii) the enzyme catalyses incorporation of [14C]-GlcNAc from the substrate, UDP[U-14C]-GlcNAc, into alkali-insoluble chitin; (iii) Southern analysis showed hybridization of a C. albicans CHS1 probe only with C. albicans DNA and not with S. cerevisiae DNA; (iv) pH profiles of the cloned enzyme showed an optimum at pH 6.8. This overlaps with the pH-activity profiles for chitin synthase measured in yeast and hyphal forms of C. albicans. Thus, CHS1 encodes only part of the chitin synthase activity in C. albicans. A gene for a second chitin synthase in C. albicans with a pH optimum at 8.0 is proposed. DNA sequencing revealed an open reading frame of 2328 nucleotides which predicts a polypeptide of Mr 88,281 with 776 amino acids. The alignment of derived amino acid sequences revealed that the CHS1 gene from C. albicans (canCHS1) is homologous (37% amino acid identity) to the CHS1 gene from S. cerevisiae (sacCHS1).  相似文献   

10.
Chitin formation depends on the activity of a family II glycosyltransferase known as chitin synthase, whose biochemical and structural properties are largely unknown. Previously, we have demonstrated that the chitin portion of the peritrophic matrix in the midgut of the tobacco hornworm, Manduca sexta, is produced by chitin synthase 2 (CHS-2), one of two isoenzymes encoded by the Chs-1 and Chs-2 genes (also named Chs-A and Chs-B), and that CHS-2 is located at the apical tips of the brush border microvilli. Here we report the purification of the chitin synthase from the Manduca midgut as monitored by its activity and immuno-reactivity with antibodies to the chitin synthase. After gel permeation chromatography, the final step of the developed purification protocol, the active enzyme eluted in a fraction corresponding to a molecular mass between 440 and 670 kDa. Native PAGE revealed a single, immuno-reactive band of about 520 kDa, thrice the molecular mass of the chitin synthase monomer. SDS-PAGE and immunoblotting indicated finally that an active, oligomeric complex of the chitin synthase was purified. In summary, the chitin synthase from the midgut of Manduca may prove to be a good model for investigating the enzymes' mode of action.  相似文献   

11.
Chitin synthase of Mortierella vinacea was present in the "microsomal' fraction (100 000 g precipitate), the 'cell-wall' fraction (2000 g precipitate) and the 'mitochondrial' fraction (10 000 g precipitate). The properties of the 'microsomal' enzyme were investigated. The pH optimum was between 5-8 and 6-2, and the temperature optimum was between 31 and 33 degrees C. The Km for UDP N-acetyl-D-glucosamine was 1.8 mM. The enzyme was stimulated by Mg2+ and a slight stimulation was also effected by N-acetyl-D-glucosamine. Soluble chitodextrins were inhibitory. A pH-dependent, heat-stable inhibitor of chitin synthase activity was present in the soluble cytoplasm from the mycelium. The effects of aeration and glucose concentration on enzyme production in growing cultures were also investigated; maximum specific activity of chitin synthase was associated with the cessation of exponential growth.  相似文献   

12.
Abstract The effect of phospholipids on chitin synthase activity has been studied with digitonin-solubilized and partially purified preparations from Coprinus cinereus . When cholate was used as detergent, it inhibited enzyme activity, but this inhibition was reversed by increasing concentrations of phospholipids. Preincubation with cholate and phospholipid caused irreversible loss of activity. When sonicated with solubilized enzyme preparation, dimyristoyl phosphatidyl choline strongly stimulated activity, while dioleoyl phosphatidyl choline was inhibitory. The Arrhenius plot of the effect of temperature on enzyme activity contained breaks, characteristic of a membrane-bound enzyme. It is suggested that chitin synthase requires an annulus of phospholipids for activity.  相似文献   

13.
Evidence for a lipid dependence of membrane-associated chitin synthase inSchizophyllum commune is based on the following observations: Arrhenius plots of the temperature dependence of this enzyme showed deflections from linearity that are characteristic for lipid-affected membrane-bound enzymes. The activity of chitin synthase dissociated by digitonin decreased at increasing digitonin/protein ratios and could be restored by addition of egg lecithin. After further delipification by sucrose gradient centrifugation, enzyme activity progressively decreased, banded at higher densities, and was less effectively restored by lecithin. The activity of dissociated chitin synthase was also restored by soybean phosphatidylcholine and low concentrations of phosphatidylinositol and phosphatidylserine. At higher concentrations, phosphatidylinositol and phosphatidylserine were inhibitory. Lysophosphatidylcholine and phosphatidylethanolamine were slightly stimulatory, whereas no effect resulting from ergosterol was observed.  相似文献   

14.
In Saccharomyces cerevisiae, the synthesis of chitin, a cell-wall polysaccharide, is temporally and spatially regulated with respect to the cell cycle and morphogenesis. Using immunological reagents, we found that steady-state levels of Chs1p and Chs3p, two chitin synthase enzymes, did not fluctuate during the cell cycle, indicating that they are not simply regulated by synthesis and degradation. Previous cell fractionation studies demonstrated that chitin synthase I activity (CSI) exists in a plasma membrane form and in intracellular membrane-bound particles called chitosomes. Chitosomes were proposed to act as a reservoir for regulated transport of chitin synthase enzymes to the division septum. We found that Chs1p and Chs3p resided partly in chitosomes and that this distribution was not cell cycle regulated. Pulse-chase cell fractionation experiments showed that chitosome production was blocked in an endocytosis mutant (end4-1), indicating that endocytosis is required for the formation or maintenance of chitosomes. Additionally, Ste2p, internalized by ligand-induced endocytosis, cofractionated with chitosomes, suggesting that these membrane proteins populate the same endosomal compartment. However, in contrast to Ste2p, Chs1p and Chs3p were not rapidly degraded, thus raising the possibility that the temporal and spatial regulation of chitin synthesis is mediated by the mobilization of an endosomal pool of chitin synthase enzymes.  相似文献   

15.
Chitosomes from the wall-less “slime” mutant of Neurospora crassa   总被引:3,自引:0,他引:3  
Cell-free extracts from the wall-less slime mutant of Neurospora crassa and the mycelium of wild type exhibit similar chitin synthetase properties in specific activity, zymogenicity and a preferential intracellular localization of chitosomes. The yield of chitosomal chitin synthetase from sline cells was essentially the same irrespective of cell breakage procedure (osmotic lysis or ballistic disruption) —an indication that chitosomes are not fragments of larger membranes produced by harsh (ballistic) disruption procedures. The plasma membrane fraction, isolated from slime cells treated with concanavalin A, contained only a minute portion of the total chitin synthetase of the fungus. Most of the activity was in the cytoplasmic fraction; isopycnic sedimentation of this fraction on a sucrose gradient yielded a sharp band of chitosomes with a buoyant density=1.125 g/ cm3. Approximately 76% of the total chitin synthetase activity of the slime mutant was recovered in the chitosome band. Because of their low density, chitosomes could be cleanly separated from the rest of the membranous organelles of the fungus. Apparently, the lack of a cell wall in the slime mutant is not due to the absence of either chitosomes or zymogenic chitin synthetase.Abbreviations Con A concanavalin A - d buoyant density in g/cm3 - GlcNAc N-acetyl-D-glucosamine - MES 2-[N-morpholino]ethanesulfonic acid - UDP-GlcNAc uridine diphosphate N-acetyl-D-glucosamine  相似文献   

16.
In Saccharomyces cerevisiae, chitin forms the primary division septum and the bud scar in the walls of vegetative cells. Three chitin synthetic activities have been detected. Two of them, chitin synthase I and chitin synthase II, are not required for synthesis of most of the chitin present in vivo. Using a novel screen, I have identified three mutations, designated csd2, csd3, and csd4, that reduce levels of chitin in vivo by as much as 10-fold without causing any obvious perturbation of cell division. The csd2 and csd4 mutants lack chitin synthase III activity in vitro, while csd3 mutants have wild-type levels of this enzyme. In certain genetic backgrounds, these mutations cause temperature-sensitive growth on rich medium; inclusion of salts or sorbitol bypasses this phenotype. Gene disruption experiments show that CSD2 is nonessential; a small amount of chitin, about 5% of the wild-type level, is detected in the disruptants. DNA sequencing indicates that the CSD2 protein has limited, but statistically significant, similarity to chitin synthase I and chitin synthase II. Other significant similarities are to two developmental proteins: the nodC protein from Rhizobium species and the DG42 protein of Xenopus laevis. The relationship between the nodC and CSD2 proteins suggests that nodC may encode an N-acetylglucosaminyltransferase that synthesizes the oligosaccharide backbone of the nodulation factor NodRm-1.  相似文献   

17.
The existence of a compensatory mechanism in response to cell wall damage has been proposed in yeast cells. The increase of chitin accumulation is part of this response. In order to study the mechanism of the stress-related chitin synthesis, we tested chitin synthase I (CSI), CSII, and CSIII in vitro activities in the cell-wall-defective mutant gas1 delta. CSI activity increased twofold with respect to the control, a finding in agreement with an increase in the expression of the CHS1 gene. However, deletion of the CHS1 gene did not affect the phenotype of the gas1 delta mutant and only slightly reduced the chitin content. Interestingly, in chs1 gas1 double mutants the lysed-bud phenotype, typical of chs1 null mutant, was suppressed, although in gas1 cells there was no reduction in chitinase activity. CHS3 expression was not affected in the gas1 mutant. Deletion of the CHS3 gene severely compromised the phenotype of gas1 cells, despite the fact that CSIII activity, assayed in membrane fractions, did not change. Furthermore, in chs3 gas1 cells the chitin level was about 10% that of gas1 cells. Thus, CSIII is the enzyme responsible for the hyperaccumulation of chitin in response to cell wall stress. However, the level of enzyme or the in vitro CSIII activity does not change. This result suggests that an interaction with a regulatory molecule or a posttranslational modification, which is not preserved during membrane fractionation, could be essential in vivo for the stress-induced synthesis of chitin.  相似文献   

18.
The treatment of Candida albicans (yeast form) with digitonin or dimethyl sulfoxide permeabilized cells and caused the activation of chitin synthase in situ. Endogenous activation was completely prevented by the sulfhydryl reagents N-ethylmaleimide, p-chloromercuribenzoate, and 5,5'-dithiobis(2-nitrobenzoic acid); partially prevented by the protease inhibitors antipain, leupeptin, and N alpha-tosyl-L-lysyl chloromethyl ketone; and also partially prevented by EDTA. Thus, a clostripain-like protease may be involved in the endogenous activation phenomenon. The pH activity profile, cofactor requirements, and kinetic parameters of the endogenously activated chitin synthase were identical to those of the trypsin-activated enzyme in protoplast membranes.  相似文献   

19.
The chitin synthase of Saccharomyces is a plasma membrane-bound zymogen. Following proteolytic activation, the enzyme synthesizes insoluble chitin that has chain length and other physical properties similar to chitin found in bud scars. We isolated mutants lacking chitin synthase activity (chs1) and used these to clone CHS1. The gene has an open reading frame of 3400 bases and encodes a protein of 130 kd. The fission yeast S. pombe lacks chitin synthase and chitin. When a plasmid encoding a CHS1-lacZ fusion protein is introduced into S. pombe, both enzymatic activities are expressed in the same ratio as in S. cerevisiae, demonstrating that CHS1 encodes the structural gene of chitin synthase. Three CHS1 gene disruption experiments were performed. In all cases, strains with the disrupted gene have a recognizable phenotype, lack measurable chitin synthase activity in vitro but are viable, contain normal levels of chitin in vivo, and mate and sporulate efficiently.  相似文献   

20.
The previously described tryptophan synthase “inactivase II”, a proteolytic enzyme from yeast, exhibits high activity in the activation of chitin synthase. Tryptophan synthase inactivase I shows essentially no activity.The purified, heat-stable inhibitor of the tryptophan synthase inactivating enzymes also inhibits the activation of chitin synthase. We take these results to mean that the proteolytic inactivation of tryptophan synthase and the proteolytic activation of chitin synthase are catalyzed and regulated by the same protease/inhibitor system  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号