首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and function of in vitro transcribed tRNA(Asp) variants with inserted conformational features characteristic of yeast tRNA(Phe), such as the length of the variable region or the arrangement of the conserved residues in the D-loop, have been investigated. Although they exhibit significant conformational alterations as revealed by Pb2+ treatment, these variants are still efficiently aspartylated by yeast aspartyl-tRNA synthetase. Thus, this synthetase can accommodate a variety of tRNA conformers. In a second series of variants, the identity determinants of yeast tRNA(Phe) were transplanted into the previous structural variants of tRNA(Asp). The phenylalanine acceptance of these variants improves with increasing the number of structural characteristics of tRNA(Phe), suggesting that phenylalanyl-tRNA synthetase is sensitive to the conformational frame embedding the cognate identity nucleotides. These results contrast with the efficient transplantation of tRNA(Asp) identity elements into yeast tRNA(Phe). This indicates that synthetases respond differently to the detailed conformation of their tRNA substrates. Efficient aminoacylation is not only dependent on the presence of the set of identity nucleotides, but also on a precise conformation of the tRNA.  相似文献   

2.
The specificity of transfer RNA aminoacylation by cognate aminoacyl-tRNA synthetase is a crucial step for synthesis of functional proteins. It is established that the aminoacylation identity of a single tRNA or of a family of tRNA isoacceptors is linked to the presence of positive signals (determinants) allowing recognition by cognate synthetases and negative signals (antideterminants) leading to rejection by the noncognate ones. The completion of identity sets was generally tested by transplantation of the corresponding nucleotides into one or several host tRNAs which acquire as a consequence the new aminoacylation specificities. Such transplantation experiments were also useful to detect peculiar structural refinements required for optimal expression of a given aminoacylation identity set within a host tRNA. This study explores expression of the defined yeast aspartate identity set into different tRNA scaffolds of a same specificity, namely the four yeast tRNA(Arg) isoacceptors. The goal was to investigate whether expression of the new identity is similar due to the unique specificity of the host tRNAs or whether it is differently expressed due to their peculiar sequences and structural features. In vitro transcribed native tRNA(Arg) isoacceptors and variants bearing the aspartate identity elements were prepared and their aminoacylation properties established. The four wild-type isoacceptors are active in arginylation with catalytic efficiencies in a 20-fold range and are inactive in aspartylation. While transplanted tRNA(1)(Arg) and tRNA(4)(Arg) are converted into highly efficient substrates for yeast aspartyl-tRNA synthetase, transplanted tRNA(2)(Arg) and tRNA(3)(Arg) remain poorly aspartylated. Search for antideterminants in these two tRNAs reveals idiosyncratic features. Conversion of the single base-pair C6-G67 into G6-C67, the pair present in tRNA(Asp), allows full expression of the aspartate identity in the transplanted tRNA(2)(Arg), but not in tRNA(3)(Arg). It is concluded that the different isoacceptor tRNAs protect themselves from misaminoacylation by idiosyncratic pathways of antidetermination.  相似文献   

3.
All eukaryotic tRNA(His) molecules are unique among tRNA species because they require addition of a guanine nucleotide at the -1 position by tRNA(His) guanylyltransferase, encoded in yeast by THG1. This G(-1) residue is both necessary and sufficient for aminoacylation of tRNA by histidyl-tRNA synthetase in vitro and is required for aminoacylation in vivo. Although Thg1 is presumed to be highly specific for tRNA(His) to prevent misacylation of tRNAs, the source of this specificity is unknown. We show here that Thg1 is >10,000-fold more selective for its cognate substrate tRNA(His) than for the noncognate substrate tRNA(Phe). We also demonstrate that the GUG anticodon of tRNA(His) is a crucial Thg1 identity element, since alteration of this anticodon in tRNA(His) completely abrogates Thg1 activity, and the simple introduction of this GUG anticodon to any of three noncognate tRNAs results in significant Thg1 activity. For tRNA(Phe), k(cat)/K(M) is improved by at least 200-fold. Thg1 is the only protein other than aminoacyl-tRNA synthetases that is known to use the anticodon as an identity element to discriminate among tRNA species while acting at a remote site on the tRNA, an unexpected link given the lack of any identifiable sequence similarity between these two families of proteins. Moreover, Thg1 and tRNA synthetases share two other features: They act in close proximity to one another at the top of the tRNA aminoacyl-acceptor stem, and the chemistry of their respective reactions is strikingly similar.  相似文献   

4.
Ambrogelly A  Frugier M  Ibba M  Söll D  Giegé R 《FEBS letters》2005,579(12):2629-2634
Borrelia burgdorferi and other spirochetes contain a class I lysyl-tRNA synthetase (LysRS), in contrast to most eubacteria that have a canonical class II LysRS. We analyzed tRNA(Lys) recognition by B. burgdorferi LysRS, using two complementary approaches. First, the nucleotides of B. burgdorferi tRNA(Lys) in contact with B. burgdorferi LysRS were determined by enzymatic footprinting experiments. Second, the kinetic parameters for a series of variants of the B. burgdorferi tRNA(Lys) were then determined during aminoacylation by B. burgdorferi LysRS. The identity elements were found to be mostly located in the anticodon and in the acceptor stem. Transplantation of the identified identity elements into the Escherichia coli tRNA(Asp) scaffold endowed lysylation activity on the resulting chimera, indicating that a functional B. burgdorferi lysine tRNA identity set had been determined.  相似文献   

5.
6.
7.
The effect of replacement of tRNA(Phe) recognition elements on positioning of the 3'-terminal nucleotide in the complex with phenylalanyl-tRNA synthetase (PheRS) from T. thermophilus in the absence or presence of phenylalanine and/or ATP has been studied by photoaffinity labeling with s(4)U76-substituted analogs of wild type and mutant tRNA(Phe). The double mutation G34C/A35U shows the strongest disorientation in the absence of low-molecular-weight substrates and sharply decreases the protein labeling, which suggests an initiating role of the anticodon in generation of contacts responsible for the acceptor end positioning. Efficiency of photo-crosslinking with the alpha- and beta-subunits in the presence of individual substrates is more sensitive to nucleotide replacements in the anticodon (G34 by A or A36 by C) than to changes in the general structure of tRNA(Phe) (as a result of replacement of the tertiary pair G19-C56 by U19-G56 or of U20 by A). The degree of disorders in the 3'-terminal nucleotide positioning in the presence of both substrates correlates with decrease in the turnover number of aminoacylation due to corresponding mutations. The findings suggest that specific interactions of the enzyme with the anticodon mainly promote the establishment (controlled by phenylalanine) of contacts responsible for binding of the CCA-end and terminal nucleotide in the productive complex, and the general conformation of tRNA(Phe) determines, first of all, the acceptor stem positioning (controlled by ATP). The main recognition elements of tRNA(Phe), which optimize its initial binding with PheRS, are also involved in generation of the catalytically active complex providing functional conformation of the acceptor arm.  相似文献   

8.
9.
Nucleotides that contribute to the identity of Escherichia coli tRNA(Phe)   总被引:8,自引:0,他引:8  
A series of sequence variants of amber suppressor genes of tRNA(Phe) were synthesized in vitro and cloned in Escherichia coli to examine the contributions of individual nucleotides to identity for amino acid acceptance. Three different but complementary types of tRNA variants were constructed. The first involved the substitution of base-pairs on the cloverleaf stem regions of the E. coli tRNA(Phe). The second type of variant involved total gene synthesis based on wild-type tRNA(Phe) sequences found in Bacillus subtilis and in Halobacterium volcanii. In the third type of variant, the identity of E. coli tRNALys was changed to that of tRNA(Phe). The nucleotides which are important for tRNA(Phe) identity in E. coli are located on the corner of the L-shaped tRNA molecule, where the dihydrouridine loop interacts with the T loop, and extend to the interior opening of the anticodon stem and the adjoining variable loop. The nucleotide sequence on the dihydrouridine stem region, which joins the corner and stem regions, was not successfully studied though it may contribute to tRNA(Phe) identity. The fourth nucleotide from the 3' end of tRNA(Phe) has some importance for identity.  相似文献   

10.
11.
12.
The solution structure of Escherichia coli tRNA(3Thr) (anticodon GGU) and the residues of this tRNA in contact with the alpha 2 dimeric threonyl-tRNA synthetase were studied by chemical and enzymatic footprinting experiments. Alkylation of phosphodiester bonds by ethylnitrosourea and of N-7 positions in guanosines and N-3 positions in cytidines by dimethyl sulphate as well as carbethoxylation of N-7 positions in adenosines by diethyl pyrocarbonate were conducted on different conformers of tRNA(3Thr). The enzymatic structural probes were nuclease S1 and the cobra venom ribonuclease. Results will be compared to those of three other tRNAs, tRNA(Asp), tRNA(Phe) and tRNA(Trp), already mapped with these probes. The reactivity of phosphates towards ethylnitrosourea of the unfolded tRNA was compared to that of the native molecule. The alkylation pattern of tRNA(3Thr) shows some similarities to that of yeast tRNA(Phe) and mammalian tRNA(Trp), especially in the D-arm (positions 19 and 24) and with tRNA(Trp), at position 50, the junction between the variable region and the T-stem. In the T-loop, tRNA(3Thr), similarly to the three other tRNAs, shows protections against alkylation at phosphates 59 and 60. However, tRNA(3Thr) is unique as far as very strong protections are also found for phosphates 55 to 58 in the T-loop. Compared with yeast tRNA(Asp), the main differences in reactivity concern phosphates 19, 24 and 50. Mapping of bases with dimethyl sulphate and diethyl pyrocarbonate reveal conformational similarities with yeast tRNA(Phe). A striking conformational feature of tRNA(3Thr) is found in the 3'-side of its anticodon stem, where G40, surrounded by two G residues, is alkylated under native conditions, in contrast to other G residues in stem regions of tRNAs which are unreactive when sandwiched between two purines. This data is indicative of a perturbed helical conformation in the anticodon stem at the level of the 30-40 base pairs. Footprinting experiments, with chemical and enzymatic probes, on the tRNA complexed with its cognate threonyl-tRNA synthetase indicate significant protections in the anticodon stem and loop region, in the extra-loop, and in the amino acid accepting region. The involvement of the anticodon of tRNA(3Thr) in the recognition process with threonyl-tRNA synthetase was demonstrated by nuclease S1 mapping and by the protection of G34 and G35 against alkylation by dimethyl sulphate. These data are discussed in the light of the tRNA/synthetase recognition problem and of the structural and functional properties of the tRNA-like structure present in the operator region of the thrS mRNA.  相似文献   

13.
High specificity in aminoacylation of transfer RNAs (tRNAs) with the help of their cognate aminoacyl-tRNA synthetases (aaRSs) is a guarantee for accurate genetic translation. Structural and mechanistic peculiarities between the different tRNA/aaRS couples, suggest that aminoacylation systems are unrelated. However, occurrence of tRNA mischarging by non-cognate aaRSs reflects the relationship between such systems. In Saccharomyces cerevisiae, functional links between arginylation and aspartylation systems have been reported. In particular, it was found that an in vitro transcribed tRNAAsp is a very efficient substrate for ArgRS. In this study, the relationship of arginine and aspartate systems is further explored, based on the discovery of a fourth isoacceptor in the yeast genome, tRNA4Arg. This tRNA has a sequence strikingly similar to that of tRNAAsp but distinct from those of the other three arginine isoacceptors. After transplantation of the full set of aspartate identity elements into the four arginine isoacceptors, tRNA4Arg gains the highest aspartylation efficiency. Moreover, it is possible to convert tRNA4Arg into an aspartate acceptor, as efficient as tRNAAsp, by only two point mutations, C38 and G73, despite the absence of the major anticodon aspartate identity elements. Thus, cryptic aspartate identity elements are embedded within tRNA4Arg. The latent aspartate acceptor capacity in a contemporary tRNAArg leads to the proposal of an evolutionary link between tRNA4Arg and tRNAAsp genes.  相似文献   

14.
M Frugier  C Florentz    R Giegé 《The EMBO journal》1994,13(9):2218-2226
We show here that small RNA helices which recapitulate part or all of the acceptor stem of yeast aspartate tRNA are efficiently aminoacylated by cognate class II aspartyl-tRNA synthetase. Aminoacylation is strongly dependent on the presence of the single-stranded G73 'discriminator' identity nucleotide and is essentially insensitive to the sequence of the helical region. Substrates which contain as few as 3 bp fused to G73CCAOH are aspartylated. Their charging is insensitive to the sequence of the loop closing the short helical domains. Aminoacylation of the aspartate mini-helix is not stimulated by a hairpin helix mimicking the anticodon domain and containing the three major anticodon identity nucleotides. A thermodynamic analysis demonstrates that enzyme interactions with G73 in the resected RNA substrates and in the whole tRNA are the same. Thus, if the resected RNA molecules resemble in some way the earliest substrates for aminoacylation with aspartate, then the contemporary tRNA(Asp) has quantitatively retained the influence of the major signal for aminoacylation in these substrates.  相似文献   

15.
16.
17.
The extent of tRNA recognition at the level of binding by Thermus thermophilus phenylalanyl-tRNA synthetase (PheRS), one of the most complex class II synthetases, has been studied by independent measurements of the enzyme association with wild-type and mutant tRNA(Phe)s as well as with non-cognate tRNAs. The data obtained, combined with kinetic data on aminoacylation, clearly show that PheRS exhibits more tRNA selectivity at the level of binding than at the level of catalysis. The anticodon nucleotides involved in base-specific interactions with the enzyme prevail both in the initial binding recognition and in favouring aminoacylation catalysis. Tertiary nucleotides of base pair G19-C56 and base triple U45-G10-C25 contribute primarily to stabilization of the correctly folded tRNA(Phe) structure, which is important for binding. Other nucleotides of the central core (U20, U16 and of the A26-G44 tertiary base pair) are involved in conformational adjustment of the tRNA upon its interaction with the enzyme. The specificity of nucleotide A73, mutation of which slightly reduces the catalytic rate of aminoacylation, is not displayed at the binding step. A few backbone-mediated contacts of PheRS with the acceptor and anticodon stems revealed in the crystal structure do not contribute to tRNA(Phe) discrimination, their role being limited to stabilization of the complex. The highest affinity of T. thermophilus PheRS for cognate tRNA, observed for synthetase-tRNA complexes, results in 100-3000-fold binding discrimination against non-cognate tRNAs.  相似文献   

18.
The anticodon of yeast tRNA(Asp), GUC, presents the peculiarity to be self-complementary, with a slight mismatch at the uridine position. In the orthorhombic crystal lattice, tRNA(Asp) molecules are associated by anticodon-anticodon interactions through a two-fold symmetry axis. The anticodon triplets of symmetrically related molecules are base paired and stacked in a normal helical conformation. A stacking interaction between the anticodon loops of two two-fold related tRNA molecules also exists in the orthorhombic form of yeast tRNA(Phe). In that case however the GAA anticodon cannot be base paired. Two characteristic differences can be correlated with the anticodon-anticodon association: the distribution of temperature factors as determined from the X-ray crystallographic refinements and the interaction between T and D loops. In tRNA(Asp) T and D loops present higher temperature factors than the anticodon loop, in marked contrast to the situation in tRNA(Phe). This variation is a consequence of the anticodon-anticodon base pairing which rigidifies the anticodon loop and stem. A transfer of flexibility to the corner of the tRNA molecule disrupts the G19-C56 tertiary interactions. Chemical mapping of the N3 position of cytosine 56 and analysis of self-splitting patterns of tRNA(Asp) substantiate such a correlation.  相似文献   

19.
The 2.4 A crystal structure of the Escherichia coli aspartyl-tRNA synthetase (AspRS)-tRNA(Asp)-aspartyl-adenylate complex shows the two substrates poised for the transfer of the aspartic acid moiety from the adenylate to the 3'-hydroxyl of the terminal adenosine of the tRNA. A general molecular mechanism is proposed for the second step of the aspartylation reaction that accounts for the observed conformational changes, notably in the active site pocket. The stabilization of the transition state is mediated essentially by two amino acids: the class II invariant arginine of motif 2 and the eubacterial-specific Gln231, which in eukaryotes and archaea is replaced by a structurally non-homologous serine. Two archetypal RNA-protein modes of interactions are observed: the anticodon stem-loop, including the wobble base Q, binds to the N-terminal beta-barrel domain through direct protein-RNA interactions, while the binding of the acceptor stem involves both direct and water-mediated hydrogen bonds in an original recognition scheme.  相似文献   

20.
Methods for the preparation of an Escherichia coli tRNA mixture lacking one or a few specific tRNA species can be the basis for future applications of cell-free protein synthesis. We demonstrate here that virtually a single tRNA species in a crude E. coli tRNA mixture can be knocked out by an antisense (complementary) oligodeoxyribonucleotide. One out of five oligomers complementary to tRNAAsp blocked the aspartylation almost completely, while minimally affecting the aminoacylation with other 13 amino acids tested. This `knockout' tRNA behaved similarly to the untreated tRNA in a cell-free translation of an mRNA lacking Asp codons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号