首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
rap1GAP is a GTPase-activating protein that specifically stimulates the GTP hydrolytic rate of p21rap1. We have defined the catalytic domain of rap1GAP by constructing a series of cDNAs coding for mutant proteins progressively deleted at the amino- and carboxy-terminal ends. Analysis of the purified mutant proteins shows that of 663 amino acid residues, only amino acids 75 to 416 are necessary for full GAP activity. Further truncation at the amino terminus resulted in complete loss of catalytic activity, whereas removal of additional carboxy-terminal residues dramatically accelerated the degradation of the protein in vivo. The catalytic domain we have defined excludes the region of rap1GAP which undergoes phosphorylation on serine residues. We have further defined this phosphoacceptor region of rap1GAP by introducing point mutations at specific serine residues and comparing the phosphopeptide maps of the mutant proteins. Two of the sites of phosphorylation by cyclic AMP (cAMP)-dependent kinase were localized to serine residues 490 and 499, and one site of phosphorylation by p34cdc2 was localized to serine 484. In vivo, rap1GAP undergoes phosphorylation at four distinct sites, two of which appear to be identical to the sites phosphorylated by cAMP-dependent kinase in vitro.  相似文献   

6.
The papillomavirus E2 protein is involved in the maintenance of persistent infection and known to bind either to cellular factors or directly to mitotic chromosomes in order to partition the viral genome into the daughter cells. However, how the HPV-16 E2 protein acts to facilitate partitioning of the viral genome remains unclear. In this study, we found that serine 243 of HPV-16 E2, located in the hinge region, is crucial for chromosome binding during mitosis. Bromodomain protein 4 (Brd4) has been identified as a cellular binding target through which the E2 protein of bovine papillomavirus type 1 (BPV-1) tethers the viral genome to mitotic chromosomes. Mutation analysis showed that, when the residue serine 243 was substituted by glutamic acid or aspartic acid, whose negative charges mimic the effect of constitutive phosphorylation, the protein still can interact with Brd4 and colocalize with Brd4 in condensed metaphase and anaphase chromosomes. However, substitution by the polar uncharged residues asparagine or glutamine abrogated Brd4 and mitotic chromosome binding. Moreover, following treatment with the inhibitor JQ1 to release Brd4 from the chromosomes, Brd4 and E2 formed punctate foci separate from the chromosomes, further supporting the hypothesis that the association of the HPV-16 E2 protein with the chromosomes is Brd4-dependent. In addition, the S243A E2 protein has a shorter half-life than the wild type, indicating that phosphorylation of the HPV-16 E2 protein at serine 243 also increases its half-life. Thus, phosphorylation of serine 243 in the hinge region of HPV-16 E2 is essential for interaction with Brd4 and required for host chromosome binding.  相似文献   

7.
The E7 protein of human papillomavirus type 16 (HPV16) transforms cultured cells and cooperates with the ras or fos oncogenes in the transformation of primary cells. In this study we have investigated the phosphorylation of E7. When we immunoprecipitated E7 from CaSki cells with a rabbit polyclonal antiserum to a bacterial fusion protein (trpE-E7), we found that E7 was phosphorylated at serine residues contained in five characteristic thermolysin peptides. Immunoprecipitated E7, and fusion proteins harboring the E7 protein from various HPV types, could all be specifically phosphorylated in vitro by the ubiquitous, growth factor-activated casein kinase II (CKII). Comparative peptide mapping showed that the sites of in vivo and in vitro phosphorylation are the same. CKII was shown previously to specifically phosphorylate serine or threonine residues within a cluster of acidic amino acids. The E7 protein contains such a sequence between amino acids 30 and 37. When a synthetic peptide corresponding to this region of E7 was phosphorylated by CKII in vitro, its thermolysin digestion products were the same as those in the phosphorylated E7 protein. We conclude that E7 is phosphorylated in vivo only at serines within the predicted CKII site and that CKII, or a CKII-like enzyme, participates in the reaction. Both the E1A and SV40 large T proteins contain similar CKII consensus sites proximal to the regions required for their associations with the retinoblastoma gene product (p105Rb). Thus it is conceivable that CKII phosphorylation can modulate the interaction between the transforming proteins and the retinoblastoma gene product.  相似文献   

8.
Phosphorylation and O-GlcNAc modification often induce conformational changes and allow the protein to specifically interact with other proteins. Interplay of phosphorylation and O-GlcNAc modification at the same conserved site may result in the protein undergoing functional switches. We describe that at conserved Ser/Thr residues of human Oct-2, alternative phosphorylation and O-GlcNAc modification (Yin Yang sites) can be predicted by the YinOYang1.2 method. We propose here that alternative phosphorylation and O-GlcNAc modification at Ser191 in the N-terminal region, Ser271 and 274 in the linker region of two POU sub-domains and Thr301 and Ser323 in the POUh subdomain are involved in the differential binding behavior of Oct-2 to the octamer DNA motif. This implies that phosphorylation or O-GlcNAc modification of the same amino acid may result in a different binding capacity of the modified protein. In the C-terminal domain, Ser371, 389 and 394 are additional Yin Yang sites that could be involved in the modulation of Oct-2 binding properties.  相似文献   

9.
10.
The DELLA proteins GAI, RGA, RGL1 and RGL2 in Arabidopsis are plant growth repressors, repressing diverse developmental processes. Studies have shown that gibberellin (GA) attenuates the repressive function of DELLA proteins by triggering their degradation via the proteasome pathway. However, it is not known if GA-induced protein degradation is the only pathway for regulating the bioactivity of DELLA proteins. We show here that tobacco BY2 cells represent a suitable system for studying GA signaling. RGL2 exists in a phosphorylated form in BY2 cells. RGL2 undergoes GA-induced degradation, and this process is blocked by proteasome inhibitors and serine/threonine phosphatase inhibitors; however, serine/threonine kinase inhibitors had no detectable effect, suggesting that dephosphorylation of serine/threonine is probably a prerequisite for degradation of RGL2 via the proteasome pathway. Site-directed substitution of all 17 conserved serine and threonine residues showed that six mutants (RGL2(S441D, RGL2(S542D), RGL2(T271E), RGL2(T319E), RGL2(T411E) and RGL2(T535E)) mimicking the status of constitutive phosphorylation are resistant to GA-induced degradation. This suggests that these sites are potential phosphorylation sites. A functional assay based on the expression of GA 20-oxidase revealed that RGL2(T271E) is probably a null mutant, RGL2(S441D), RGL2(S542D), RGL2(T319E) and RGL2(T411E) only retained about 4-17% of the activity of the wild type RGL2, whereas RGL2(T535E) retained about 66% of the activity of the wild type RGL2. However, expression of GA 20-oxidase in BY2 cells expressing these mutant proteins is still responsive to GA, suggesting that the stabilization of RGL2 protein is not the only pathway for regulating its bioactivity.  相似文献   

11.
Insulin receptor substrate (IRS) 2 as intermediate docking platform transduces the insulin/IGF-1 (insulin like growth factor 1) signal to intracellular effector molecules that regulate glucose homeostasis, β-cell growth, and survival. Previously, IRS2 has been identified as a 14-3-3 interaction protein. 14-3-3 proteins can bind their target proteins via phosphorylated serine/threonine residues located within distinct motifs. In this study the binding of 14-3-3 to IRS2 upon stimulation with forskolin or the cAMP analog 8-(4-chlorophenylthio)-cAMP was demonstrated in HEK293 cells. Binding was reduced with PKA inhibitors H89 or Rp-8-Br-cAMPS. Phosphorylation of IRS2 on PKA consensus motifs was induced by forskolin and the PKA activator N6-Phe-cAMP and prevented by both PKA inhibitors. The amino acid region after position 952 on IRS2 was identified as the 14-3-3 binding region by GST-14-3-3 pulldown assays. Mass spectrometric analysis revealed serine 1137 and serine 1138 as cAMP-dependent, potential PKA phosphorylation sites. Mutation of serine 1137/1138 to alanine strongly reduced the cAMP-dependent 14-3-3 binding. Application of cycloheximide revealed that forskolin enhanced IRS2 protein stability in HEK293 cells stably expressing IRS2 as well as in primary hepatocytes. Stimulation with forskolin did not increase protein stability either in the presence of a 14-3-3 antagonist or in the double 1137/1138 alanine mutant. Thus the reduced IRS2 protein degradation was dependent on the interaction with 14-3-3 proteins and the presence of serine 1137/1138. We present serine 1137/1138 as novel cAMP-dependent phosphorylation sites on IRS2 and show their importance in 14-3-3 binding and IRS2 protein stability.  相似文献   

12.
Jiang X  Wang Y 《Biochemistry》2004,43(49):15567-15576
Dehydrins are a group of proteins that are accumulated during environmental stress such as drought and low temperature or during late embryogenesis. In the present study, we isolated dehydrin DHN1, also known as Rab17 protein, from maize kernel by an acid extraction method, removed the phosphoric acid groups from phosphorylated residues by beta-elimination via treating the protein with barium hydroxide, and identified the sites of phosphorylation by tandem mass spectrometry. Our results showed that each of the seven contiguous serine residues (Ser78-Ser84) in the serine tract could be phosphorylated. The beta-elimination procedure was shown to be essential for the detection and subsequent site mapping of the heavily phosphorylated peptide by mass spectrometry. We also found that protein kinase CK2 could catalyze the phosphorylation of the DHN1 protein in vitro and the level of phosphorylation was comparable to that of the DHN1 isolated from maize seeds. Moreover, the in vitro phosphorylation also occurred on the serine residues in the serine tract region, suggesting that CK2 might be involved in the phosphorylation of the serine track region in maize kernel in vivo.  相似文献   

13.
Yu JH  Lin BY  Deng W  Broker TR  Chow LT 《Journal of virology》2007,81(10):5066-5078
Human and animal papillomavirus DNA replicates as multicopy nuclear plasmids. Replication requires two viral proteins, the origin-recognition protein E2 and the replicative DNA helicase E1. Using genetic, biochemical, and immunofluorescence assays, we demonstrated that efficient nuclear import of the human papillomavirus (HPV) type 11 E1 protein depends on a codominant bipartite nuclear localization sequence (NLS) and on phosphorylation of the serine residues S89 and S93 by the mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase, and c-Jun N-terminal protein kinase. The NLS and the MAPK substrates are located within a 50-amino-acid-long peptide near the amino terminus, previously designated the localization regulatory region (LRR). The downstream NLS overlaps the cyclin-binding motif RRL, which is necessary for phosphorylation by the cyclin-dependent kinases to inactivate a dominant nuclear export sequence, also in the LRR. Alanine mutations of the MAPK substrates significantly impaired nuclear import, whereas phospho-mimetic mutations partially restored nuclear import. We further identified two MAPK docking motifs near the C terminus of E1 that are conserved among E1 proteins of many HPVs and bovine papillomavirus type 1. Mutations of these MAPK docking motifs or addition of specific MAPK inhibitors significantly reduced nuclear import. Interestingly, a fraction of the NLS-minus E1 protein was cotransported with the E2 protein into the nucleus and supported transient viral DNA replication. In contrast, E1 proteins mutated in the MAPK docking motifs were completely inactive in transient replication, an indication that additional properties were adversely affected by those changes.  相似文献   

14.
Double-stranded-RNA (dsRNA)-dependent protein kinase PKR is induced by interferon and activated upon autophosphorylation. We previously identified four autophosphorylated amino acids and elucidated their participation in PKR activation. Three of these sites are in the central region of the protein, and one is in the kinase domain. Here we describe the identification of four additional autophosphorylated amino acids in the spacer region that separates the two dsRNA-binding motifs in the RNA-binding domain. Eight amino acids, including these autophosphorylation sites, are duplicated in hepatitis C virus (HCV) envelope protein E2. This region of E2 is required for its inhibition of PKR although the mechanism of inhibition is not known. Replacement of all four of these residues in PKR with alanines did not dramatically affect kinase activity in vitro or in yeast Saccharomyces cerevisiae. However, when coupled with mutations of serine 242 and threonines 255 and 258 in the central region, these mutations increased PKR protein expression in mammalian cells, consistent with diminished kinase activity. A synthetic peptide corresponding to this region of PKR was phosphorylated in vitro by PKR, but phosphorylation was strongly inhibited after PKR was preincubated with HCV E2. Another synthetic peptide, corresponding to the central region of PKR and containing serine 242, was also phosphorylated by active PKR, but E2 did not inhibit this peptide as efficiently. Neither of the PKR peptides was able to disrupt the HCV E2-PKR interaction. Taken together, these results show that PKR is autophosphorylated on serine 83 and threonines 88, 89, and 90, that this autophosphorylation may enhance kinase activation, and that the inhibition of PKR by HCV E2 is not solely due to duplication of and competition with these autophosphorylation sites.  相似文献   

15.
Phosphoamino acid analysis of mouse connexin45 (Cx45) expressed in human HeLa cells revealed that phosphorylation occurred mainly at serine residues, but also on tyrosine and threonine residues. To characterize the role of Cx45 phosphorylation, different serine residues of the serine-rich carboxy terminal region were deleted or exchanged for other amino acids residues. Human HeLa cells deficient in gap junctional intercellular communication were stably transfected with appropriate constructs and analyzed for expression, localization, phosphorylation, formation of functional gap junction channels and degradation of mutant Cx45. After exchange or deletion of nine carboxy terminal serine residues, phosphorylation was decreased by 90%, indicating that these serine residues represented main phosphorylation sites of mouse Cx45. The various serine residues of this region contributed differently to the phosphorylation of Cx45 suggesting a cooperative mechanism for phosphorylation. Substitution of different serine residues for other amino acids did not interfere with correct intracellular trafficking and assembly of functional gap junction channels, as shown by localization of mutant Cx45 at the plasma membrane and by dye transfer to neighboring cells. Truncated Cx45 was also weakly phosphorylated but was trapped in perinuclear locations. Dye transfer of these transfectants was similar as in nontransfected HeLa cells. The half-life of mouse Cx45 protein in HeLa cells was determined as 4.2 hr. Pulse-chase experiments with the different transfectants revealed an increased turnover of Cx45, when one or both of the serine residues at positions 381 and 382 or 384 and 385 were exchanged for other amino acids. The half-life of these mutants was diminished by 50% compared to wild type Cx45. Received: 26 September 1997/Revised: 5 January 1997  相似文献   

16.
17.
The IkappaB kinase (IKK) complex includes the catalytic components IKKalpha and IKKbeta in addition to the scaffold protein IKKgamma/NEMO. Increases in the activity of the IKK complex result in the phosphorylation and subsequent degradation of IkappaB and the activation of the NF-kappaB pathway. Recent data indicate that the constitutive activation of the NF-kappaB pathway by the human T-cell lymphotrophic virus, type I, Tax protein leads to enhanced phosphorylation of IKKgamma/NEMO by IKKbeta. To address further the significance of IKKbeta-mediated phosphorylation of IKKgamma/NEMO, we determined the sites in IKKgamma/NEMO that were phosphorylated by IKKbeta, and we assayed whether IKKgamma/NEMO phosphorylation was involved in modulating IKKbeta activity. IKKgamma/NEMO is rapidly phosphorylated following treatment of cells with stimuli such as tumor necrosis factor-alpha and interleukin-1 that activate the NF-kappaB pathway. By using both in vitro and in vivo assays, IKKbeta was found to phosphorylate IKKgamma/NEMO predominantly in its carboxyl terminus on serine residue 369 in addition to sites in the central region of this protein. Surprisingly, mutation of these carboxyl-terminal serine residues increased the ability of IKKgamma/NEMO to stimulate IKKbeta kinase activity. These results indicate that the differential phosphorylation of IKKgamma/NEMO by IKKbeta and perhaps other kinases may be important in regulating IKK activity.  相似文献   

18.
Phosphorylated ribosomal proteins were isolated from Xenopus 40 S ribosomal subunits by reversed-phase high performance liquid chromatography (HPLC) to enable direct analysis of the phosphorylation sites in ribosomal protein S6. Xenopus S6 closely resembled mammalian S6 with respect to the following properties: (i) reversed-phase HPLC elution behavior, (ii) amino-terminal sequence (96% identity in the first 37 residues), and (iii) an identical sequence within the region of its phosphorylation sites. Whereas S6 was the only ribosomal protein phosphorylated in vitro by Xenopus S6 kinase II, ribosomes phosphorylated in vivo were found to be associated with an additional phosphoprotein having an amino-terminal sequence identical to that of the ubiquitin carboxyl-terminal extension protein CEP 80. S6 kinase II phosphorylated at least four sites (serines 1-3 and 5) in the sequence Arg-Arg-Leu-Ser(1)-Ser(2)-Leu-Arg-Ala-Ser(3)-Thr-Ser(4)-Lys-Ser(5)-, which correspond to the residues known to be phosphorylated in the carboxyl-terminal region of mammalian S6. The in vivo S6 phosphorylation sites in maturing Xenopus oocytes were shown to be located within the same cluster of serine residues, although individual sites were not identified. Kinetic analysis of S6 kinase II-catalyzed phosphorylation events indicated a simple sequential mechanism of multisite phosphorylation initiating at either serine 2 (preferred) or serine 1, with the rates of phosphorylation of individual sites occurring in the order serine 2 greater than serine 1 greater than serine 3 greater than serine 5.  相似文献   

19.
The central region of the N-myc protein has a characteristic amino acid sequence EDTLSDSDDEDD, which is very similar to those of particular domains of adenovirus E1A, human papilloma virus E7, Simian virus 40 large T, c-myc and L-myc proteins. Domains of these three viral oncoproteins have recently been shown to be specific binding sites for the tumor-suppressor gene retinoblastoma protein. We have noted that the sequence of serine followed by a cluster of acidic amino acids is exactly the same as that of a typical substrate of casein kinase II (CKII). Therefore, we investigated whether these nuclear oncoproteins are phosphorylated by CKII. For this purpose, we fused the beta-galactosidase and N-myc genes including this domain and expressed it in Escherichia coli cells. Several mutant N-myc genes, containing single amino acid substitutions in this domain, were also used to produce fused proteins. Strong phosphorylation by CKII was detected with the fused protein of wild-type N-myc. However, no phosphorylation of beta-galactosidase itself was observed and the phosphorylations of fused mutant proteins were low. Another fused N-myc protein containing most of the C-terminal region downstream of this acidic region was not phosphorylated by CKII. Analysis of phosphorylation sites in synthetic peptides of this acidic region identified the major sites phosphorylated by CKII as Ser261 and Ser263. On two-dimensional tryptic mapping of phosphorylated N-myc proteins, major spots of in vitro-labeled and in-vivo-labeled N-myc proteins were detected in the same positions. These results suggest that two serine residues of the acidic central region of the N-myc protein are phosphorylated by CKII in vivo as well as in vitro. The functional significance of this acidic domain is discussed.  相似文献   

20.
Glycogen synthase kinase-3 phosphorylates three serine residues on glycogen synthase (sites 3a, 3b and 3c) which are all located in the same nine-amino-acid segment of the polypeptide chain. The sequence in this region is: Arg-Tyr-Pro-Arg-Pro-Ala-Ser(P)-Val-Pro-Pro-Ser(P)-Pro-Ser-Leu-Ser(P)-Arg-. These serine residues are distinct from the sites phosphorylated preferentially by cyclic-AMP-dependent protein kinase (sites 1a and 1b) and phosphorylase kinase (site 2). The N-terminal sequence of glycogen synthase containing the serine residue phosphorylated by phosphorylase kinase has been extended. The sequence in this region is: Pro-Leu-Ser-Arg-Thr-Leu-Ser(P)-Val-Ser-Ser-Leu-Pro-Gly-Leu-Glu-Asp-Trp-Glu-Asp- Glu-Phe-Asp-Leu-Glu-Asn-Ser-Val-Leu-Phe-(Asx2,Glx2,Ala2,Val2,Lys)-. The similarity to the N-terminal sequence of phosphorylase is confined to the immediate vicinity of the phosphorylation site (residues 4--15). The relationship of glycogen synthase kinase-3 to glycogen synthase kinases that have been described by other laboratories is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号