首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Class A β-lactamases (260–280 amino acids; M r  ~ 29,000) are among the largest proteins studied in term of their folding properties. They are composed of two structural domains: an all-α domain formed by five to eight helices and an α/β domain consisting of a five-stranded antiparallel β-sheet covered by three to four α-helices. The α domain (~150 residues) is made up of the central part of the polypeptide chain whereas the α/β domain (111–135 residues) is constituted by the N- and C-termini of the protein. Our goal is to determine in which order the different secondary structure elements are formed during the folding of BS3. With this aim, we will use pulse-labelling hydrogen/deuterium exchange experiments, in combination with 2D-NMR measurements, to monitor the time-course of formation and stabilization of secondary structure elements. Here we report the backbone resonance assignments as the requirement for further hydrogen/deuterium exchange studies.  相似文献   

2.
3.
4.
5.
6.
7.
8.
PTPN7 is a protein tyrosine phosphatase responsible for inactivation of MAPK in leukocytes. Here we report the backbone resonance assignments of the 34 kDa phosphatase domain of human PTPN7, which is amplified in myeloid malignancies and deleted in lymphoproliferative disorders.  相似文献   

9.
10.
11.
12.
SlyD from Escherichia coli is a peptidyl–prolyl cis–trans isomerase involved in [Ni–Fe] hydrogenase metallocentre assembly in bacteria. We present here the backbone and side chain assignments for E. coli SlyD.  相似文献   

13.
Galectin-1 is an important regulator of leukocyte function and tumor angiogenesis. Recently, this lectin has been identified as a molecular target for the potent angiogenesis inhibitor anginex. Here, we report 1H, 13C, and 15N chemical shift assignments for human galectin-1 as determined by using heteronuclear triple resonance NMR spectroscopy.  相似文献   

14.
Alpha(1)-antitrypsin is a 45-kDa (394-residue) serine protease inhibitor synthesized by hepatocytes, which is released into the circulatory system and protects the lung from the actions of neutrophil elastase via a conformational transition within a dynamic inhibitory mechanism. Relatively common point mutations subvert this transition, causing polymerisation of α(1)-antitrypsin and deficiency of the circulating protein, predisposing carriers to severe lung and liver disease. We have assigned the backbone resonances of α(1)-antitrypsin using multidimensional heteronuclear NMR spectroscopy. These assignments provide the starting point for a detailed solution state characterization of the structural properties of this highly dynamic protein via NMR methods.  相似文献   

15.
The structure of the 30 KDa subunit a of the membrane component (F(0)) of E. coli ATP synthase is investigated in a mixture of chloroform, methanol and water, a solvent previously used for solving the structure of another integral membrane protein, subunit c. Near complete backbone chemical shift assignments were made from a set of TROSY experiments including HNCO, HNCA, HN(CA)CB, HN(CO)CACB and 4D HNCOCA and HNCACO. Secondary structure of subunit a was predicted from the backbone chemical shifts using TALOS program. The protein was found to consist of multiple elongated alpha-helical segments. This finding is generally consistent with previous predictions of multiple transmembrane alpha-helices in this polytopic protein.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号