首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
NY-ESO-1 is expressed by a broad range of human tumors and is often recognized by Abs in the sera of cancer patients with NY-ESO-1-expressing tumors. The NY-ESO-1 gene also encodes several MHC class I- and class II-restricted tumor epitopes recognized by T lymphocytes. In this study we report one novel pan-MHC class II-restricted peptide sequence, NY-ESO-1 87-111, that is capable of binding to multiple HLA-DR and HLA-DP4 molecules, including HLA-DRB1*0101, 0401, 0701, and 1101 and HLA-DPB1*0401 and 0402 molecules. We also demonstrate that peptide NY-ESO-1 87-111 stimulates Th1-type and Th-2/Th0-type CD4(+) T cells and clones when presented in the context of these HLA-DR and HLA-DP4 molecules. Both bulk CD4(+) T cells and CD4(+) T cell clones were capable of recognizing not only peptide-pulsed APCs, but also autologous dendritic cells, either loaded with the NY-ESO-1 protein or transfected with NY-ESO-1 cDNAs. Using IFN-gamma and IL-5 ELISPOT assays and PBL from patients with NY-ESO-1-expressing tumors, we observed the existence of Th1-type circulating CD4(+) T cells recognizing peptide NY-ESO-1 87-111 in the context of HLA-DP4 molecules. Taken together, these data represent the first report of an HLA-DR- and HLA-DP-restricted epitope from a tumor Ag. They also support the relevance of cancer vaccine trials with peptides NY-ESO-1 87-111 in the large number of cancer patients with NY-ESO-1-expressing tumors.  相似文献   

3.
Chronic beryllium disease is a lung disorder caused by beryllium exposure in the workplace and is characterized by granulomatous inflammation and the accumulation of beryllium-specific, HLA-DP2-restricted CD4+ T lymphocytes in the lung that proliferate and secrete Th1-type cytokines. To characterize the interaction among HLA-DP2, beryllium, and CD4+ T cells, we constructed rHLA-DP2 and rHLA-DP4 molecules consisting of the alpha-1 and beta-1 domains of the HLA-DP molecules genetically linked into single polypeptide chains. Peptide binding to rHLA-DP2 and rHLA-DP4 was consistent with previously published peptide-binding motifs for these MHC class II molecules, with peptide binding dominated by aromatic residues in the P1 pocket. 9Be nuclear magnetic resonance spectroscopy showed that beryllium binds to the HLA-DP2-derived molecule, with no binding to the HLA-DP4 molecule that differs from DP2 by four amino acid residues. Using beryllium-specific CD4+ T cell lines derived from the lungs of chronic beryllium disease patients, beryllium presentation to those cells was independent of Ag processing because fixed APCs were capable of presenting BeSO4 and inducing T cell proliferation. Exposure of beryllium-specific CD4+ T cells to BeSO4 -pulsed, plate-bound rHLA-DP2 molecules induced IFN-gamma secretion. In addition, pretreatment of beryllium-specific CD4+ T cells with BeSO4-pulsed, plate-bound HLA-DP2 blocked proliferation and IL-2 secretion upon re-exposure to beryllium presented by APCs. Thus, the rHLA-DP2 molecules described herein provide a template for engineering variants that retain the ability to tolerize pathogenic CD4+ T cells, but do so in the absence of the beryllium Ag.  相似文献   

4.
TCRs exhibit a high degree of specificity but may also recognize multiple and distinct peptide-MHC complexes, illustrating the so-called cross-reactivity of TCR-peptide-MHC recognition. In this study, we report the first evidence of CD4(+) T cells recognizing the same tumor peptide-epitope from NY-ESO-1, in the context of multiple HLA-DR and HLA-DP molecules. These cross-reactive CD4(+) T cells recognized not only autologous but also allogenic dendritic cells previously loaded with the relevant protein (i.e., the normally processed and presented epitope). Using clonotypic real-time RT-PCR, we have detected low frequencies of CD4(+) T cells expressing one cross-reactive TCR from circulating CD4(+) T cells of patients with stage IV melanoma either spontaneously or after immunization but not in normal donors. The maintenance of cross-reactive tumor Ag-specific CD4(+) T cells in PBLs of cancer patients required the presence of tumor Ag/epitope in the context of the MHC molecule used to prime the Ag-specific CD4(+) T cells. Our findings have significant implications for the optimization of TCR gene transfer immunotherapies widely applicable to cancer patients.  相似文献   

5.
Recently, we have demonstrated that tumor-specific CD4+ Th cell responses can be rapidly induced in advanced melanoma patients by vaccination with peptide-loaded monocyte-derived dendritic cells. Most patients showed a T cell reactivity against a melanoma Ag 3 (MAGE-3) peptide (MAGE-3(243-258)), which has been previously found to be presented by HLA-DP4 molecules. To analyze the functional and specificity profile of this in vivo T cell response in detail, peptide-specific CD4+ T cell clones were established from postvaccination blood samples of two HLA-DP4 patients. These T cell clones recognized not only peptide-loaded stimulator cells but also dendritic cells loaded with a recombinant MAGE-3 protein, demonstrating that these T cells were directed against a naturally processed MAGE-3 epitope. The isolated CD4+ Th cells showed a typical Th1 cytokine profile upon stimulation. From the first patient several CD4+ T cell clones recognizing the antigenic peptide used for vaccination in the context of HLA-DP4 were obtained, whereas we have isolated from the second patient CD4+ T cell clones which were restricted by HLA-DQB1*0604. Analyzing a panel of truncated peptides revealed that the CD4+ T cell clones recognized different core epitopes within the original peptide used for vaccination. Importantly, a DP4-restricted T cell clone was stimulated by dendritic cells loaded with apoptotic or necrotic tumor cells and even directly recognized HLA class II- and MAGE-3-expressing tumor cells. Moreover, these T cells exhibited cytolytic activity involving Fas-Fas ligand interactions. These findings support that vaccination-induced CD4+ Th cells might play an important functional role in antitumor immunity.  相似文献   

6.
Chronic beryllium disease (CBD) is characterized by a CD4+ T cell alveolitis and granulomatous inflammation in the lung. Genetic susceptibility to this disease has been linked with HLA-DP alleles, particularly those possessing a glutamic acid at position 69 (Glu69) of the beta-chain. However, 15% of CBD patients do not possess a Glu69-containing HLA-DP allele, suggesting that other MHC class II alleles may be involved in disease susceptibility. In CBD patients without a Glu69-containing HLA-DP allele, an increased frequency of HLA-DR13 alleles has been described, and these alleles possess a glutamic acid at position 71 of the beta-chain (which corresponds to position 69 of HLA-DP). Thus, we hypothesized that beryllium presentation to CD4+ T cells was dependent on a glutamic acid residue at the identical position of both HLA-DP and -DR. The results show that HLA-DP Glu69- and HLA-DR Glu71-expressing molecules are capable of inducing beryllium-specific proliferation and IFN-gamma expression by lung CD4+ T cells. Using fibroblasts expressing mutated HLA-DP2 and -DR13 molecules, beryllium recognition was dependent on the glutamic acid at position 69 of HLA-DP and 71 of HLA-DR, suggesting a critical role for this amino acid in beryllium presentation to Ag-specific CD4+ T cells. Thus, these results demonstrate that a single amino acid residue of the MHC class II beta-chain dictates beryllium presentation and potentially, disease susceptibility.  相似文献   

7.
Because of the high frequency of HLA-DP4 in the Caucasian population, we have selectively delineated HLA-DP4 restricted T cell epitopes in the MAGE-A tumor antigens. We identified 12 good binders to HLA-DP4 and investigated the capacity of the seven best binders to induce in vitro specific CD4+ T cell lines from HLA-DP4 healthy donors. We found that the MAGE-A1 90–104 peptide exhibited a high and constant frequency of CD4+ T cell precursors in all the six tested donors. The MAGE-A1 268–282 peptide was found immunogenic in only two donors but with a high precursor frequency. The MAGE-A12 127–141 peptide was T cell stimulating in six different donors and induced fewer T cell lines. The peptide-specific T cell lines were stimulated by DC loaded with the lysates of cells transfected with MAGE-A1 or MAGE-A12, or loaded with the recombinant protein. We also show that the immunoreactivity of CD4+ T cell epitopes restricted to the same HLA II molecule may vary from one individual to another, as a result of inter-individual variations in the CD4+ T cell repertoire.  相似文献   

8.
We investigated interactions between CD4+ T cells and dendritic cells (DC) necessary for presentation of exogenous Ag by DC to CD8+ T cells. CD4+ T cells responding to their cognate Ag presented by MHC class II molecules of DC were necessary for induction of CD8+ T cell responses to MHC class I-associated Ag, but their ability to do so depended on the manner in which class II-peptide complexes were formed. DC derived from short-term mouse bone marrow culture efficiently took up Ag encapsulated in IgG FcR-targeted liposomes and stimulated CD4+ T cell responses to Ag-derived peptides associated with class II molecules. This CD4+ T cell-DC interaction resulted in expression by the DC of complexes of class I molecules and peptides from the Ag delivered in liposomes and permitted expression of the activation marker CD69 and cytotoxic responses by naive CD8+ T cells. However, while free peptides in solution loaded onto DC class II molecules could stimulate IL-2 production by CD4+ T cells as efficiently as peptides derived from endocytosed Ag, they could not stimulate induction of cytotoxic responses by CD8+ T cells to Ag delivered in liposomes into the same DC. Signals requiring class II molecules loaded with endocytosed Ag, but not free peptide, were inhibited by methyl-beta-cyclodextrin, which depletes cell membrane cholesterol. CD4+ T cell signals thus require class II molecules in cholesterol-rich domains of DC for induction of CD8+ T cell responses to exogenous Ag by inducing DC to process this Ag for class I presentation.  相似文献   

9.
Memory CD4 T-cell responses against respiratory syncytial virus (RSV) were evaluated in peripheral blood mononuclear cells of healthy blood donors with gamma interferon enzyme-linked immunospot (Elispot) assays. RSV-specific responses were detected in every donor at levels varying between 0.05 and 0.3% of CD4 T cells. For all donors tested, a considerable component of the CD4 T-cell response was directed against the fusion (F) protein of RSV. We characterized a set of 31 immunodominant antigenic peptides targeted by CD4 T cells in the context of the most prevalent HLA class II molecules within the Caucasian population. Most antigenic peptides were HLA-DR restricted, whereas two dominant DQ peptides were also identified. The antigenic peptides identified were located across the entire sequence of the F protein. Several peptides were presented by more than one major histocompatibility complex class II molecule. Furthermore, most donors recognized several F peptides. Detailed knowledge about immunodominant antigenic peptides will facilitate the ability to monitor CD4 T-cell responses in patients and the measurement of correlates of protection in vaccinated subjects.  相似文献   

10.
In previous studies, the shared cancer-testis Ag, NY-ESO-1, was demonstrated to be recognized by both Abs and CD8+ T cells. Gene expression of NY-ESO-1 was detected in many tumor types, including melanoma, breast, and lung cancers, but was not found in normal tissues, with the exception of testis. In this study, we describe the identification of MHC class II-restricted T cell epitopes from NY-ESO-1. Candidate CD4+ T cell peptides were first identified using HLA-DR4 transgenic mice immunized with the NY-ESO-1 protein. NY-ESO-1-specific CD4+ T cells were then generated from PBMC of a patient with melanoma stimulated with the candidate peptides in vitro. These CD4+ T cells recognized NY-ESO-1 peptides or protein pulsed on HLA-DR4+ EBV B cells, and also recognized tumor cells expressing HLA-DR4 and NY-ESO-1. A 10-mer peptide (VLLKEFTVSG) was recognized by CD4+ T cells. These studies provide new opportunities for developing more effective vaccine strategies by using tumor-specific CD4+ T cells. This approach may be applicable to the identification of CD4+ T cell epitopes from many known tumor Ags recognized by CD8+ T cells.  相似文献   

11.
The number of circulating CD4+ T cells constitutively expressing CD25 (T regulatory, Treg) and natural killer T (NK T) cells, the two major lymphocyte populations that help to maintain immune homeostasis, was studied in 22 unselected myasthenia gravis (MG) patients, 16 healthy subjects and 24 patients with cancer, the latter as a disease model of a relative immune suppression status. Treg cells were assessed according to their intermediate or high level of expression of CD25, i.e., CD25int and CD25bright, and to the expression of HLA-DR, CD62L, CD45RO and CD152. There were no differences in the number of NK T cells and CD4+CD25bright cells among the three series of individuals. MG patients and healthy subjects had also similar numbers of CD4+CD25int cells. However, the whole CD4+ cell compartment in MG patients was in an activated status, as indicated by the higher level of expression of CD152. By contrast, and consistent with a relative immune suppression status, cancer patients had higher numbers of CD4+CD25int cells and larger proportions of HLA-DR expressing CD4+CD25int and CD4+CD25bright cells. Immunomagnetically purified CD4+CD25+ cells from MG, healthy subjects and cancer patients were anergic and suppressed the proliferative response of other T cells.  相似文献   

12.
Wild-type sequence (wt) p53 peptides are attractive candidates for broadly applicable cancer vaccines. Evidence has been accumulating which indicates that CD4+ Th cells have an important role in generating and maintaining antitumor immune responses. To elucidate the nature of CD4+ Th responses to wt p53 epitopes in patients with squamous cell carcinoma of the head and neck (SCCHN), peripheral blood mononuclear cells (PBMCs) from HLA-DP5+ patients were stimulated with HLA-DP5-restricted wt p53 peptides, p53108–122 or p53153–166, and tested for the release of IFN-γ and IL-5 in ELISPOT assays. Immunohistochemistry for p53 accumulation in tumors, and ELISA for serum antibodies to p53 were also performed. Eleven (57.9%) of 19 HLA-DP5+ patients but none of 5 healthy donors had detectable Th1 and/or Th2 responses to wt p53 peptides by ELISPOT assay. Among these 11 responding patients, 9 (81.8%) and all 11 (100%) patients had a tumor burden and p53 accumulation, respectively. On the other hand, two responding patients were in post-operative condition. Interestingly, among nine patients with a tumor burden, four patients with early disease showed either Th1-polarized or mixed Th1/Th2 responses, while five patients with advanced disease showed either Th2-polarized or mixed Th1/Th2 responses. Our results suggest that wt p53108–122 and p53153–166 peptides stimulate both Th1- and Th2-type CD4+ T cell responses in patients with SCCHN, and anti-p53 Th responses may persist even after surgical resection of the tumor; however, the presence of a tumor and its progression may affect the nature of immune responses to wt p53 peptides.  相似文献   

13.
The beta subunit of human chorionic gonadotropin (hCG beta) is markedly overexpressed by neoplastic cells of differing histological origin including those present in colon, breast, prostate and bladder tumors. We have previously shown that some patients with hCG beta-producing urothelial tumors have circulating T cells that proliferate in response to hCG beta. To make a comprehensive study of hCG beta as a potential target for cancer immunotherapy, we investigated whether hCG beta peptides could induce CD4+ or CD8+ T-cell responses in vitro. By stimulating peripheral blood mononuclear cells (PBMCs) from three donors with mixtures of overlapping 16-mer synthetic peptides analogous to portions of either the hCG beta 20-71 or the hCG beta 102-129 region, we established six CD4+ T-cell lines that proliferated specifically in response to five distinct determinants located within these two hCG beta regions. Three antigenic determinants (hCG beta 52-67, 106-121 and 114-125) were presented by HLA-DR molecules, while the two other antigenic determinants (hCG beta 48-63 and 56-67) were presented by HLA-DQ molecules. Interestingly, one T-cell line specific for peptide hCG beta 106-121 recognized hCG beta peptides comprising, at position 117, either an alanine or an aspartic acid residue, with the latter residue being present within the protein expressed by some tumor cells. In addition, three other hCG beta-derived peptides that exhibited HLA-A*0201 binding ability were able to stimulate CD8+ cytotoxic T cells from two HLA-A*0201 donors. These three immunogenic peptides corresponded to regions hCG beta 40-48, hCG beta 44-52 and hCG beta 75-84. Our results indicate that the tumor-associated antigen hCG beta possesses numerous antigenic determinants liable to stimulate CD4+ and CD8+ T lymphocytes, and might thus be an effective target antigen for the immunotherapy of hCG beta-producing tumors.  相似文献   

14.
To determine whether strong CD4+ T cell immunity could be induced to a nonmutated self protein that is important for tumorigenesis, we selectively targeted the xenogeneic form of survivin, a survival protein overexpressed in tumors, to maturing dendritic cells in lymphoid tissues. Dendritic cell targeting via the DEC205 receptor in the presence of anti-CD40 and poly(I:C) as maturation stimuli, induced strong human and mouse survivin-specific CD4+ T cell responses, as determined by IFN-gamma, TNF-alpha, and IL-2 production, as well as the development of lytic MHC class II-restricted T cells and memory. Immunity was enhanced further by depletion of CD25+foxp3+ cells before vaccination. anti-DEC205-human survivin was superior in inducing CD4+ T cell responses relative to other approaches involving survivin plasmid DNA or survivin peptides with adjuvants. However, we were unable to induce CD8+ T cell immunity to survivin by two doses of DEC205-targeted survivin or the other strategies. Therefore, significant CD4+ T cell immunity to a self protein that is overexpressed in most human cancers can be induced by DEC205 targeting of the Ag in its xenogeneic form to maturing DCs.  相似文献   

15.
Cyclin D1 is over-expressed in various human tumors and therefore can be a potential oncogenic target antigen. However, only a limited number of T cell epitopes has been characterized. We aimed at identifying human cyclin D1-derived peptides that include both CD4 and CD8 T cell epitopes and to test if such multi-epitope peptides could yield improved cytotoxic CD8 T cell responses as well as cytotoxic CD4 T cells. Five HLA-DR.B1-binding peptides containing multiple overlapping CD4 epitopes and HLA-A0201-restricted CD8 T cell epitopes were predicted by computer algorithms. Immunogenicity of the synthetic peptides was assessed by stimulating T cells from healthy donors in vitro and the epitope recognition was measured by IFN-γ ELISPOT and 51Chromium release assays. A HLA-DR.B1 peptide, designed “DR-1”, in which a HLA-A0201-binding epitopes (D1-1) was imbedded, induced CD3 T cell responses against both DR-1 and D1-1 peptides in IFN-γ ELISPOT assay. This suggested processing of the shorter D1-1 epitope from the DR-1 sequence. However, only DR-1-stimulated CD4 or CD3 T cells possessed cytotoxicity against peptide-pulsed autologous DCs and a cancer cell line, that expresses a high level of cyclin D1. Monoclonal antibody to HLA-DR abrogated the epitope-specific responses of both CD3 and CD4 T cells, demonstrating class II-mediated killing. Our studies suggest a possible role of CD4 T cells in anti-tumor immunity as cytotoxic effectors against HLA-DR expressing cancers and provide a rationale for designing peptide vaccines that include CD4 epitopes.  相似文献   

16.
The membrane receptor 2B4 is a CD2 family member that is involved in lymphocyte activation. A fraction of human CD8+ alphabeta T cells up-regulate 2B4 in vivo, and here we demonstrate that this correlates with the acquisition of effector cell properties such as granzyme B and perforin expression, rapid IFN-gamma production, and down-regulation of the lymph node homing chemokine receptor CCR7. In PBLs from healthy donors, cytomegalovirus-specific effector T cells were 2B4 positive, whereas naive melanoma Ag (Melan-A/melanoma Ag recognized by T cells-1)-specific T cells were 2B4 negative. In melanoma patients, Melan-A-specific T cells up-regulated 2B4 in parallel with in vivo differentiation. This occurred in PBLs after vaccination with Melan-A peptides and in tumor-infiltrated lymph nodes, likely through disease-associated activation of Melan-A-specific T cells. Thus, 2B4 expression correlates with CD8+ T cell differentiation in vivo.  相似文献   

17.
The melanoma-associated Ag glycoprotein 100 was analyzed by the T cell epitope prediction software TEPITOPE. Seven HLA-DR promiscuous peptides predicted with a stringent threshold were used to load dendritic cells (DC), and induction of a proliferative response was monitored. PBMC of all nine donors including two patients with malignant melanoma responded to at least one of the peptides. The proliferative response was defined as a Th response by the selective expansion of CD4(+) cells, up-regulation of CD25 and CD40L, and IL-2 and IFN-gamma expression. Peptide-loaded DC also initiated a T helper response in vivo (i.e., tumor growth in the SCID mouse was significantly retarded by the transfer of PBMC together with peptide-loaded DC). Because the use of the TEPITOPE program allows for a prediction of T cell epitopes; because the predicted peptides can be rapidly confirmed by inducing a Th response in the individual patient; and because application of peptide-loaded DC suffices for the in vivo activation of helper cells, vaccination with MHC class II-binding peptides of tumor-associated Ags becomes a feasible and likely powerful tool in the immunotherapy of cancer.  相似文献   

18.
T cell recognition of allopeptides in context of syngeneic MHC.   总被引:10,自引:0,他引:10  
We have analyzed the ability of T cells to recognize peptides corresponding in sequence to an allogeneic HLA-DR molecule, in context of syngeneic MHC. PBMC from a responder with the HLA-DR beta 1*1101/DR beta 1*1201 genotype were stimulated in vitro with a mixture of four synthetic peptides derived from the first domain of the DR beta 1*0101 chain (amino acid residue 1-20, 21-42, 43-62, and 66-90). An alloreactive T cell line, TCL-LS, which proliferates only in response to peptide 21-42 presented by HLA-DR beta 1*1101, was obtained. The blastogenic response of the line was inhibited by anti-HLA-DR and CD4 antibodies but was not affected by antibodies to HLA-DQ, HLA-DP, HLA-ABC, and CD8. In the presence of irradiated, autologous APC, TCL-LS displayed specific proliferative responses to stimulating cells obtained from individuals carrying the DR beta 1*0101 allele. In the absence of autologous APC, TCL-LS recognized HLA-DR1 on allogeneic cells only when expressed together with HLA-DR beta 1*1101, the restrictive element. This indicates that TCL-LS recognizes processed HLA-DR1 molecule presented as nominal Ag. Study of TCR-V beta gene repertoire expressed by TCL-LS showed that only two V beta genes were used (V beta 13.2 and V beta 12). Two T cell clones (TCC) derived from this line, TCC-A5 and B4, exhibited a similar pattern of reactivity and expressed V beta 13.2. These results indicate that T cells recognizing peptides, which are derived from the breakdown of allogeneic MHC class II proteins and are presented by self-HLA-DR molecules, participate in allorecognition.  相似文献   

19.
Synthetic peptides have been used to exactly define a T cell epitope region from the immunogenic 18-kDa protein of Mycobacterium leprae. Four M. leprae reactive CD4+ T cell clones, isolated from two healthy individuals vaccinated with killed M. leprae, recognized a determinant initially defined by the peptide (38-50). However, fine mapping of the minimal sequence required for T cell recognition revealed heterogeneity among the T cell clones with regard to the N- and carboxyl-terminal boundaries of the epitopes recognized. MHC restriction analysis showed that the immunogenic peptides were presented to the T cells in an HLA-DR4,Dw4-restricted manner in all cases. The results suggest that a polyclonal T cell response representing different fine specificities is directed toward a possible immunodominant epitope from the M. leprae 18-kDa Ag in individuals carrying this MHC haplotype.  相似文献   

20.
Human myoblasts as antigen-presenting cells.   总被引:11,自引:0,他引:11  
Human myoblasts, cultured from muscle and purified to greater than 95%, were investigated for their capacity to act as facultative APC. The myoblasts reacted with antidesmin mAb and had the capacity to fuse into multinucleated myotubes in appropriate medium. The expression of HLA class I, HLA-DR, HLA-DP, HLA-DQ, intercellular adhesion molecule-1 (ICAM-1/CD54), lymphocyte function-associated (LFA) molecules LFA-1 (CD11a/CD18), LFA-2 (CD2), and LFA-3 (CD58) was investigated by FACS analysis before and after induction for various times with human rIFN-gamma, TNF-alpha, or both. Without cytokine induction, myoblasts expressed only HLA-class I and LFA-3. IFN-gamma alone or in combination with TNF-alpha induced the expression of HLA-DR and ICAM-1 reaching a plateau after 48 h, followed by HLA-DP and even later HLA-DQ. TNF-alpha alone induced only ICAM-1. The functional capacity of myoblasts to present Ag to CD4+ T cells was investigated using autologous T cell lines specific for tuberculin, tetanus toxoid, and human myelin basic protein. Noninduced myoblasts or myoblasts treated with TNF-alpha alone could not present any of these Ag to the T cells. However, myoblasts treated with IFN-gamma induced Ag-specific proliferation. In the presence of relevant Ag, myoblasts were killed by the T cells as observed by microscopy and measured by 51Cr release. Ag-specific T cell proliferation and myoblast killing was inhibited in the presence of anti-DR mAb. These results suggest that human myoblasts may act as facultative APC during local immune reactions in muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号