首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and sensitive method has been outlined for the measurement of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) utilizing a weak cation-exchange resin and liquid chromatography with electrochemical detection. The sensitivity of the procedure allows measurement of the amine in punches of rat substantia nigra even after local injection of the neurotoxin 5,7-dihydroxytryptamine. Increases in 5-HT and decreases in 5-HIAA concentrations after pargyline, and selective increases in 5-HIAA concentrations after probenecid were detected in selected brain regions (nucleus accumbens, anterior striatum, substantia nigra). Thus, this procedure is sensitive enough to estimate 5-HT turnover in discrete nuclei of the rat brain.  相似文献   

2.
The effects of acute treatment with p-chloramphetamine, d-fenfluramine, and reserpine on intracellular (brain tissue and whole blood) and extracellular (CSF and platelet-free plasma) compartments of 5-hydroxytryptamine (5-HT) in the brain and blood of the same rats have been examined. These treatments affected 5-HT in brain tissue and whole blood similarly (r = 0.823). Reserpine significantly reduced both intracellular pools at 2 and 24 h. p-Chloroamphetamine and d-fenfluramine were more effective on brain tissue 5-HT. The concentration of 5-HT in CSF was significantly increased by all treatments. p-Chloroamphetamine induced a dramatic 70-fold increase of CSF 5-HT, paralleling a 42% decrease in brain tissue. d-Fenfluramine significantly increased CSF 5-HT to 212% of controls and reduced whole brain 5-HT (-23%). The effects of p-chloroamphetamine and d-fenfluramine on 5-HIAA in brain, CSF, and plasma were nonsignificant. Individual values of 5-hydroxyindoleacetic acid (5-HIAA) in CSF and brain were highly correlated (r = 0.855), indicating that CSF 5-HIAA reflects well the concentration of 5-HIAA in brain tissue. Yet the intra- and extracellular concentrations of 5-HIAA were unrelated to the 5-HT changes. This indicates that CSF 5-HIAA does not reflect the active (extracellular) compartment of 5-HT in brain.  相似文献   

3.
A pre-column derivatization method using a fluorogenic reagent, 1,2-diphenylethylenediamine (DPE) was studied for the sensitive HPLC determination of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA), which are biosubstances used in the diagnosis of several diseases. For the quantitative determination, the biogenic indole compounds were converted to their corresponding fluorescent derivatives with DPE in the presence of potassium hexacyanoferrate (III) at room temperature, and then the derivatives were separated by reversed-phase liquid chromatography with fluorescence detection. The chromatographic detection limits of the fluorescent peaks at a signal-to-noise ratio of 3 were 0.3 fmol for 5-HT and 0.2 fmol for 5-HIAA. The proposed method permits the simultaneous quantification of 5-HT and 5-HIAA at concentrations higher than 2.4 nM in human urine without a clean-up procedure.  相似文献   

4.
Summary The present method permits rapid and sensitive study of the concentration levels of serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) in the same tissue sample and the determination of the turnover of these substances in small brain parts.I wish to thank Merck Sharp and Dohme for supplies of probenecid.  相似文献   

5.
A novel and highly sensitive method has been developed for the determination of catecholamines [noradrenaline (NA), dopamine (DA), serotonin (5-HT) and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA)] in brain tissue. The method uses isocratic reversed-phase HPLC with amperometric end-point detection. The calibration curve was linear over the range 10–150 pg on-column. The assay limits of detection for NA, DA, 5-HT, 5-HIAA and HVA were 3.8, 3.8, 6.8, 5 and 7.5 pg on-column, respectively. The mean inter- and intra-assay relative standard deviations (RSDs) over the range of the standard curve were less than 5%. The absolute recoveries averaged 99.1%, 99.5%, 97.7%, 99.5% and 98.8% for NA, DA, 5-HT, 5-HIAA and HVA, respectively.  相似文献   

6.
The extracellular concentrations of 5-hydroxytryptamine (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) have been determined in six brain areas of awake rats (frontal cortex, striatum, hypothalamus, hippocampus, inferior colliculus, and raphe nuclei) using intracerebral microdialysis. The extracellular levels of 5-HT showed no significant differences among the brain regions studied. The tissue levels of 5-HT and 5-HIAA as well as the extracellular concentration of 5-HIAA were significantly higher in raphe nuclei. The regional distribution of tissue and extracellular 5-HIAA were very similar, suggesting that extracellular 5-HIAA depends mainly on the output from the intracellular compartment. On the other hand, extracellular 5-HT and tissue 5-HT showed a different distribution pattern. The tissue/extracellular ratio for 5-HT ranged from 739 in frontal cortex to 2,882 in raphe, whereas it only amounted to 1.8-3.6 for 5-HIAA. The relationship between the present results and the density of 5-HT uptake sites in these areas is discussed.  相似文献   

7.
Effect of disulfiram on 5-hydroxytryptamine (5-HT) turnover was studied. Treatment with disulfiram caused increases in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in rat brain. Under the same condition, activity of brain mitochondrial aldehyde dehydrogenase was reduced, however, supernatant aldehyde dehydrogenase and monoamine oxidase activities remained unchanged. Disulfiram had no effect on synthesis rate of 5-HT, but decreased metabolism of 5-HT. Moreover, disulfiram impaired transport of 5-HIAA from brain tissue.  相似文献   

8.
Abstract— 5-HT was injected intravenously in rats (10 mg/kg) and a marked increase in brain 5-HT and 5-HIAA was observed. For the first 10 min after injection the penetration of 5-HT into the brain and formation of 5-HIAA is evident. After 10 min degradation of exogenous 5-HT and elimination of 5-HIAA are prominent. Metabolism of exogenous 5-HT in the brain is very fast (half-life between 5 and 10 min; completely metabolized in approximately 80 min). The importance of these results in explaining the permeability of blood-brain barrier to 5-HT is discussed. Experiments on brain slices show that 5-HT is more readily metabolized in brain tissue than eliminated into incubation medium. In contrast, 5-HIAA very easily leaves brain tissue.  相似文献   

9.
The quantitative estimation of total dopamine (DA), noradrenaline (NE), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in the whole brain tissue of normal Nile grass rat, Arvicanthis niloticus, gives and average of 631 +/- 12 ng DA/g, 366 +/- 12 ng NE/g, 617 +/- 15 ng 5-HT/g and 431 +/- 10 ng 5-HIAA/g fresh brain tissue. The effect of barbitone sodium and thiopental sodium on the total DA, NE, 5-HT and 5-HIAA content in the brain tissue of the Nile grass rat, Arvicanthis niloticus, was studied. The total DA, NE, 5-HT and 5-HIAA contents were determined 5 hr after i.p. injection of different doses of barbitone sodium (20, 40 and 80 mg/ml/100 g body wt) and thiopental sodium (5, 10 and 20 mg/ml/100 g body wt). The effect of different time intervals (1, 10, 30 min, 1, 2.5, 5, 8, 16, 24 and 48 hr) on the total brain DA, NE, 5-HT and 5-HIAA content was investigated after i.p. injection of 40 mg of barbitone sodium and 10 mg of thiopental sodium/ml/100 g body wt. Both barbitone sodium and thiopental sodium caused an increase in DA, NE and 5-HT content and a decrease in 5-HIAA content in the brain tissue of Arvicanthis niloticus. The increase in the whole brain contents of DA, NE and 5-HT after the administration of barbitone sodium and thiopental sodium may be due either to inhibition of transmitter release by an action at the monoamine nerve terminal or to effects causing a decrease in nerve impulse flow. On the other hand, the decrease in 5-HIAA may be due to the decrease in the turnover of 5-HT.  相似文献   

10.
A rapid and simple technique using solvent extraction and high pressure liquid chromatography with electrochemical detection has been developed for the determination of serotonin in small brain tissue samples (1-20 mg). The method has a reasonably good specificity and a very low experimental error (less than 3%s.e ., calculated from six samples processed and analysed from the same brain homogenate). The recovery of authentic 5-HT added is 80-90%. The 5-HT levels of rat whole brain was found with the present technique to be 690 ± 17.5 ng/g and of mouse neocortex 304 ± 16 ng/g. Monoamine oxidase inhibition with pargyline (2 h) increased 5-HT levels in mouse neocortex to 194 ± 15% (N = 5) of control, while reserpine depleted 5-HT to 13 ± 4% of control. The method has a sensitivity level of about 20 pg (0.1 pmol) per brain sample.  相似文献   

11.
A simple technique is described for repeated sampling of cerebrospinal fluid (CSF) from the freely moving rat and its use in the determinations of 5-hydroxytryptamine (5-HT) turnover validated. A catheter, constructed from polyethylene tubing (PP10) was implanted via a cranial approach into the cisterna magna and x-ray studies confirmed that the catheter avoided the cerebellum. 5-HT turnover was determined from the rate of rise of 5-hydroxyindoleacetic acid (5-HIAA) in both CSF and brain following an injection of probenecid (200 mg/kg i.p.). Concentrations of 5-HIAA, 5-HT and tryptophan were determined by high pressure liquid chromatography. Turnover values for individual rats were obtained using CSF samples. After p-chlorophenylalanine treatment (when brain 5-HT was depleted by 43%) 5-HT turnover values obtained were comparably reduced whether determined from CSF (-67%) or brain (-74%). Thus differences of rat brain 5-HT turnover are proportionately reflected by CSF measurements. The method for sampling of CSF should be applicable in a wide range of pharmacological and physiological situations.  相似文献   

12.
The fabrication and application of a novel electrochemical detection (ED) system with a poly(bromophenol blue) (PBPB) film chemically modified electrode (CME) for high performance liquid chromatography (HPLC) were described. The electrochemical behaviors of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) at this CME were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the PBPB CME efficiently exhibited electrocatalytic effect on the current responses of 5-HT and 5-HIAA with relatively high sensitivity, stability and long life of activity. In HPLC-ED, the two analytes had good and stable current responses at the CME and their linear ranges were over four orders of magnitude (R> or =0.9992) with the detection limits being 0.25 nmol L(-1) for 5-HT and 0.50 nmol L(-1) for 5-HIAA. The application of this method for the determination of 5-HT and 5-HIAA in urine samples from patients with acute appendicitis (AA) was satisfactory.  相似文献   

13.
A determination of dopamine (DA), noradrenaline (NA), 3,4-dihydroxyphenylalanine (DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindolacetic acid (5-HIAA) in nervous tissue is described. The method is based on a rapidly performed isolation of DA, NA, DOPA, DOPAC, HVA, and 5-HIAA from one single nervous tissue sample on small columns of Sephadex G-10, followed by reverse-phase high-performance liquid chromatography with electrochemical detection. A new type of electrochemical detector based on a rotating disk electrode (RDE) was used. The rotating disc electrode was found to be a reliable and sensitive amperometric detector with several advantages over the currently used thin-layer cells. The detector appeared very useful for routine analysis. Practical details are given for the routine use of the RDE. Brain samples containing no more than 75-150 pg (DA, DOPA, DOPAC, HVA, and 5-HIAA) or 500 pg (NA) could be reproducibly assayed with high recovery (approx. 85%) and precision (approx. 5%), without the use of internal standards. Endogenous concentrations of DA, NA, DOPA, DOPAC, HVA, and 5-HIAA were determined in eight brain structures.  相似文献   

14.
A procedure is described for the rapid determination of the major indoles and catechols. Analysis with picogram detection limits was done by high-pressure liquid chromatography on a C18 reverse-phase column using electrochemical detection (LCEC). This method provides a comprehensive list of compounds which can be simultaneously determined in brain samples and for which there is no necessity of derivatization or pre-column purification. The regional distribution of 9 neurochemicals from rat brain and the levels of 10 neurochemicals from human brain are presented. DOPA, TYR, NE, MHPG, DOPAC, 5-HIAA, TRP, DA, HVA, 3-MT and 5-HT were detected in the caudate nucleus and putamen. The levels of neurochemicals from the caudate and putamen of a demented patient with Parkinson's disease were variably decreased; catechol and indole losses were greatest in the putamen. The levels of neurochemicals in the caudate and putamen of patients with Alzheimer's disease (SDAT) were also variably decreased; loss of NE was seen only in putamen and losses of DA, HVA and 5-HT were uniform across both caudate and putamen. The CSF of SDAT patients showed changes in NE only.  相似文献   

15.
Previous morphological studies reported that serotonergic neurons appear in rats in the second half of prenatal life. Initially the biochemical differentiation of these neurons before birth was studied. Both serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) was detected in the fetal brain on day 15 of gestation. During prenatal development an increase was detected in the brain levels of 5-HT (200% higher on day 19 than on day 15) and 5-HIAA (700% higher on day 19 than on day 15). Oral administration of tryptophan to pregnant rats induced a dose-related increase of tryptophan concentration in different fetal tissues, including brain. The increase in tryptophan tissue concentration was detected for low doses (50 mg/kg) and remained unsaturated after administration of high doses (1000 mg/kg). This observation suggests that the placental barrier is not effective to block the influx of high levels of tryptophan to the fetus. Tryptophan concentration in the brain is 300% higher than in the carcass and 600% higher than in the placenta. These data suggest a mechanism to assume a role in concentrating of tryptophan in the brain. Finally, it was found that an increase in brain tryptophan induced changes in both serotonin and 5-HIAA brain levels, but did not modify tyrosine, dopamine or norepinephrine levels. Thus, under physiological conditions, tryptophan hydroxylase activity in prenatal brain is probably not saturated by its substrate tryptophan.  相似文献   

16.
Postmortem (pm) manipulations of brain tissue of decapitated mice produced a maximum decline in 5-HT and a maximum rise in 5-HIAA of 20 and 40%, respectively. The pm treatments included freezing and thawing, mincing, and leaving over. Microwave irradiation or pretreatment of the animals with the enzymatic inhibitors NSD 1015 or pargyline suppressed the pm effects. The possible role of pm effects in the initial accumulation of 5-HT and decline of 5-HIAA in the brain following administration of pargyline was studied. Our data suggest that, when MAO inhibitors are used, 5-HT turnover might be overestimated by pm changes.  相似文献   

17.
Abstract: The administration of tryptophan (Trp)-free amino acid mixtures to depressed patients responding to serotonin [5-hydroxytryptamine (5-HT)] uptake inhibitors (SSRIs) worsens their clinical state. This procedure reduces Trp availability to brain and thus impairs 5-HT synthesis. We have examined the influence of Trp depletion on extracellular 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations in the rat brain using in vivo microdialysis. The treatment with the SSRI fluvoxamine significantly increased 5-HT content in dialysates from frontal cortex, as compared with control rats (10.2 ± 2.7 vs. 3.1 ± 0.4 fmol per fraction), whereas 5-HIAA was unaffected. Food deprivation for 20 h reduced dialysate 5-HT content to almost control values in fluvoxamine-treated rats (10.2 ± 2.7 vs. 4.3 ± 0.6 fmol per fraction) but did not alter dialysate 5-HIAA content (7.8 ± 0.4 vs. 7.2 ± 0.5 pmol per fraction). The administration of Trp-free amino acid mixtures to fluvoxamine-treated rats significantly attenuated the release of 5-HT in frontal cortex (~50%) and, to a lesser extent, in the midbrain raphe nuclei. This effect was more marked in rats not deprived from food before the experiments (67% reduction of dialysate 5-HT content in frontal cortex) and was absent in control rats (treated with saline). In contrast, dialysate 5-HIAA was markedly affected by Trp depletion in all groups, including controls (65–75% reductions). These data show that the administration of an amino acid mixture with the same composition and dose (in milligrams per kilogram of body weight) as those inducing a severe mood impairment in depressed patients reduces 5-HT and 5-HIAA concentrations in brain dialysates. The reduction of 5-HT release, however, occurs only in animals previously treated with the antidepressant fluvoxamine for 2 weeks, which would be consistent with a marked reduction of 5-HT-mediated transmission in treated depressed patients but not in healthy controls.  相似文献   

18.
Sprague-Dawley rats were stressed by immobilization from 30 to 300 minutes and the effects on serotonin (5-HT) and 5-hydroxy-indoleacetic acid (5-HIAA) content were determined in the cerebral cortex, diencephalon, striatum, hippocampus and the brain stem. In a subsequent study 5-HT turnover rate in these brain areas was estimated by measuring 5-HIAA accumulation 0, 30, 60 and 90 minutes after probenecid. The content of 5-HIAA and the turnover rate of 5-HT were significantly increased in the cerebral cortex shortly after the onset of immobilization. The content of 5-HIAA in the brainstem was increased by immobilization although 5-HT turnover rate was not increased. Short term increases in 5-HIAA content were observed in the striatum and hippocampus. However, no significant changes in 5-HT turnover rate were observed in either of these 2 brain areas. Immobilization did not affect 5-HIAA content or 5-HT turnover in the diencephalon. The sensitivity of the serotonergic system in the cerebral cortex to immobilization stress suggests that this brain region could be used in future studies of the interrelationships between stress and the brain serotonergic system.  相似文献   

19.
The effect of cadmium administration (Cd 0.4 mg/kg, ip, intraperitoneally, daily for 30 days) on its accumulation, contents of 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in different brain regions in growing and adult rats was investigated. Cadmium was found to significantly increase the levels of 5-HT and 5-HIAA in all the brain regions of adult rats while the levels of 5-HT and 5-HIAA were significantly decreased in most of the brain regions of growing rats. The accumulation of cadmium in all the brain regions was significantly more marked in growing rats compared to adults after identical exposure. In conclusion, there was an age difference in both the accumulation of cadmium and 5-HT turnover in the brain regions. However, the regional neurochemical changes were not correlated with the magnitude of cadmium accumulation in both the groups.  相似文献   

20.
The agents p-chlorophenylalanine (PCPA) and p-chloroamphetamine (PCA) deplete brain serotonin (5-HT) levels by two different mechanisms; PCPA inhibits the enzyme tryptophan hydroxylase, whereas PCA has a neurotoxic action on certain 5-HT neurons. The parameters of [3H]paroxetine binding to homogenates prepared from the cerebral cortex of rats treated with PCPA, PCA, or saline; vehicle were investigated. The tissue concentrations of 5-HT and 5-hydroxyindole-3-acetic acid (5-HIAA) were also determined by HPLC in the same brain samples. After PCPA treatment, neither the maximum binding capacity (Bmax) nor the dissociation constant (KD) of [3H]paroxetine for the 5-HT uptake recognition site differed from controls despite a substantial reduction in the concentration of 5-HT and 5-HIAA. In contrast, significant changes in both the Bmax and KD values were observed in the cerebral cortex of rats treated with PCA. Furthermore, [3H]paroxetine binding and tissue concentrations of 5-HT and 5-HIAA were measured in the following different regions of the rat brain: cingulate, parietal, and visual cortical areas; dorsal and ventral hippocampus; rostral and caudal halves of neostriatum; ventral mesencephalic tegmentum; and midbrain raphe nuclei region after administration of PCPA, PCA, or saline vehicle. There was an excellent correlation between regional 5-HT levels and specific [3H]paroxetine binding in control and PCA-treated rats although this correlation was lost after PCPA treatment. Under these conditions, the 5-HT innervation remains unchanged whereas the concentration of 5-HT and 5-HIAA is greatly reduced. Thus, [3H]paroxetine binding appears to provide a reliable marker of 5-HT innervation density within the mammalian CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号