首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of insulin on cardiac lysosomes and protein degradation   总被引:3,自引:0,他引:3  
Hearts perfused in the absence of added insulin had 1) accelerated rates of protein degradation, as assessed by release of phenylalanine and tyrosine; 2) increased rates of release of seven other amino acids; 3) decreased lysosomal latency and sedimentable lysosomal enzyme activity; 4) increased numbers of autophagic vacuoles in cardiac muscle cells; and 5) decreased activity of beta-N-acetylglucosaminidase in dense lysosomes (1.06-1.09 g/ml), as compared to hearts perfused in the presence of the hormone. After 3 h of perfusion in the absence of insulin, the changes that developed in protein degradation, lysosomal latency, and sedimentability, and in enzyme activity in dense lysosomes, were reversed by insulin addition during 90 min of subsequent perfusion. These studies suggest a role for insulin in controlling the activity of the lysosomal system and the involvement of this system in protein degradation, particularly in insulin-deprived tissue.  相似文献   

2.
The effects of glucagon and insulin administration in vivo on hepatic mitochondrial Ca2+ uptake were compared with the effects of these hormones when they were added directly to the perfused liver. Glucagon administration increased mitochondrial calcium uptake both in vivo and in the perfused liver. In contrast, while injection of insulin into rats stimulated, addition of insulin to the perfusate, inhibited Ca2+ uptake. Cyclic AMP, when added to the perfusate, also increased the uptake of Ca2+ by mitochondria, subsequently isolated. The possible implications of the results are discussed.  相似文献   

3.
4.
The effects of acute and chronic endotoxin treatment on the plasma levels of insulin and glucagon and their binding to rat liver plasma membranes were examined. Both acute and chronic endotoxin administration increased plasma glucagon levels and decreased the glucagon to insulin molar ratio. Acute, but not chronic, endotoxin decreased blood glucose and insulin levels. Glucagon binding was increased in membranes prepared from the acutely treated rats. However, in membranes obtained from rats treated chronically with endotoxin, only insulin binding was increased. The increases in the binding of both insulin and glucagon were the result of increases in receptor sites.  相似文献   

5.
The effects of exogenous and endogenous insulin and glucagon on aldolase turnover in rat liver and blood were studied. Some effects of these hormones on the biosynthesis and degradation of hepatic aldolase were specified. The rate of the "de novo" synthesis of aldolase was investigated in hepatocyte mitochondria and in blood plasma. The exogenous and endogenous hormones were shown to produce different effects on the biosynthesis and spontaneous degradation of rat liver aldolase.  相似文献   

6.
7.
8.
9.
10.
11.
Evidence is presented that incubation of rat liver cells with glucagon leads to an increase in the phosphorylation of specific serine residues within insulin receptors, particularly in the presence of insulin. However, no changes in either the tyrosine phosphorylation of the receptors or the tyrosine kinase activity towards a synthetic peptide substrate was detected.  相似文献   

12.
The concentrations of insulin and glucagon were measured in the portal and hepatic vein, the abdominal aorta and caval vein in the rat during a normal 24-h feeding cycle. Portal insulin levels showed little diurnal variation while hepatovenous and peripheral values were clearly increased during the eating phase. Conversely, portal glucagon levels were maximal during the fasting period while hepatovenous and peripheral concentrations showed little diurnal variation. The removal of insulin and glucagon by the liver was not constant, but independently regulated. During meals the liver increased the high portal insulin/glucagon ratio further to an even higher peripheral ratio favouring glucose utilization, e.g. by muscle and adipose tissue. During a short fast the liver decreased the low portal insulin/glucagon ratio further to an even lower peripheral ratio leading to glucose saving, e.g. by muscle and adipose tissue in favour of the brain and erythrocytes. The results indicate that the liver has an important role in the regulation of peripheral insulin/glucagon levels.  相似文献   

13.
14.
G Csaba  M Kádár 《Endokrinologie》1978,71(1):113-115
Epinephrine and insulin increased glucose uptake in Planaria, but epinephrine did so to a much grater extent. Glucagon proved to be without effect. The experiments support earlier results according to which in unicellular and invertebrate organisms membrane patterns can be found, which are similar to those of higher organisms and behave like receptors.  相似文献   

15.
The possible direct effects of insulin and glucagon on carnitine uptake by perfused rat liver were studied with L-[3H]carnitine of an initial concentration of 50 microM in the perfusate. Insulin (10 nM) did not significantly affect the uptake by livers from fed animals. However, insulin could reverse the stimulated transport by livers from 24-h fasted animals, reducing the uptake rate from 852 +/- 54.1 to 480 +/- 39.9 (mean +/- S.E.), P less than 0.01 (rates are expressed as nmol per h per 100 g body wt). Glucagon (50 nM) stimulated the uptake rate when livers were either from fed (551 +/- 40.1 vs. 915 +/- 55.3, P less than 0.01) or from fasted animals (852 +/- 54.1 vs. 1142 +/- 88.1, P less than 0.02). Based on these and earlier observations, we propose that the carnitine concentration in rat liver is controlled by insulin and glucagon via cellular transport processes.  相似文献   

16.
17.
18.
The effects of infusion of glucosamine on immunoreactive glucagon (IRG) and insulin (IRI) secretion were studied in dogs and ducks. During systemic infusion of glucosamine, hyperglycemia developed and insulin secretion was inhibited in both species. An immediate and sustained elevation of peripheral IRG levels was induced in ducks but a transient rise, detectable only in the pancreatic vein blood, was provoked in dogs. Suppression of insulin release and stimulation of glucagon release may be mediated by the inhibition of glucose utilization in beta- and alpha-cells. The very prompt response of IRG in ducks may imply that glucosamine has a specific stimulating effect on the alpha-cells of ducks. Intrapancreatic administration of glucosamine in dogs, however, failed to elicit the rise of IRG, although insulin secretion was inhibited. Thus, it is suggested that the systemic administration of glucosamine in dogs may stimulate IRG secretion by some indirect effect. In one dog, however, a sustained rise of the pancreatic vein IRG was observed. Thus, the possibility cannot be ruled out that the difference in IRG response to glucosamine in dogs and ducks is quantitative rather than qualitative. Glucagon release by glucosamine may provide an additional factor to the hyperglycemic effect of glucosamine, in addition to its effect to suppress insulin release as well as its direct inhibitory effect on glucose utilization in tissues.  相似文献   

19.
Pro-opiomelanocortin (POMC) is a prohormone for several peptides including corticotropin, melanocyte stimulating hormones and beta-endorphin. POMC-derived peptides have been demonstrated in many tissues, including the hypothalamus and the endocrine pancreas, which play important roles in the control of plasma levels of glucagon, insulin and glucose. This article reviews the present knowledge concerning in vitro and in vivo effects of POMC-derived peptides on glucagon, insulin and glucose levels involving several possible mechanisms: direct effects on the endocrine pancreas (including endocrine, paracrine and peptidergic regulation) and glucose production, and indirect effects involving the hypothalamus, the autonomic nervous system and the adrenal gland.  相似文献   

20.
A study was made of the effect of insulin and glucagon on the time of functioning and degradation of superoxidedismutase in the liver of rats irradiated with a dose of 8 Gy. The hormones were shown to enhance the effect of radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号