首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetylcholine, the first neurotransmitter to be identified in the vertebrate frog, is widely distributed among the animal kingdom. The presence of a large amount of acetylcholine in the nervous system of cephalopods is well known from several biochemical and physiological studies. However, little is known about the precise distribution of cholinergic structures due to a lack of a suitable histochemical technique for detecting acetylcholine. The most reliable method to visualize the cholinergic neurons is the immunohistochemical localization of the enzyme choline acetyltransferase, the synthetic enzyme of acetylcholine. Following our previous study on the distribution patterns of cholinergic neurons in the Octopus vulgaris visual system, using a novel antibody that recognizes choline acetyltransferase of the common type (cChAT), now we extend our investigation on the octopus central brain mass. When applied on sections of octopus central ganglia, immunoreactivity for cChAT was detected in cell bodies of all central brain mass lobes with the notable exception of the subfrontal and subvertical lobes. Positive varicosed nerves fibers where observed in the neuropil of all central brain mass lobes.Key words: invertebrate, cephalopod, choline acetyltransferase, neuron, immunohistochemistry.  相似文献   

2.
The sodium-dependent high affinity choline uptake into synaptosomes from rat brain has been studied after in vivo treatments which would alter the activity of cholinergic neurons. We utilized a number of treatments to reduce the activity of cholinergc neurons in the brain. Administration of pentobarbital (65 mg/kg), chloral hydrate (40 mg/kg) and γbutyrelactone (750 mg/kg) caused a 50-80% reduction in sodium-dependent high affinity choline uptake in several brain regions (30 min). This depression was not found 24 h after injection. Interruption of the cholinergic septal-hippocampal or habenuleinterpeduncular tracts by lesions (10 min-1 h) also caused a similar, large reduction in sodium-dependent high affinity choline uptake in the hippocampus and the interpeduncular nucleus respectively. We reversed the inactivity after pentobarbital administration by direct electrical stimulation of the cholinergic septal-hippocampal tract. Stimulation (40 Hz) for 10-15 min completely reversed the depression in sodium-dependent high affinity choline uptake. Stimulation at lower frequencies or for shorter times caused a partial reversal. Administration of pentylenetetrazol (75 mg/kg), a convulsant, was utilized to increase the activity of central cholinergic neurons. After drug administration, we found a large (60%) increase in sodium-de-pendent high affinity choline uptake. This increase was not found in the hippocampus when cholinergic afferents were interrupted by septal lesion prior to drug administration. We also examined the uptake after administration of cholinergic drugs. Oxotremorine (0.75 mg/kg), a muscarinic agonist which reduces acetylcholine release and turnover, caused a reduction in uptake. On the other hand, administration of scopolamine (5 mg/kg), a cholinergic antagonist which increases acetylcholine turnover, caused an increase in sodium-dependent high affinity choline uptake. Addition of any drug utilized, drectly to uptake samples, did not alter uptake. We examined the conversion of [3H]choline to [3H]acetylcholine in hippocampal synaptosomes after septal lesion, pentylenetetrazol administration and in untreated controls. In all cases, 60-70% of the total sodium-dependent tritium content was present as [3H]acetylcholine. Evidence was presented that homoexchange is not or is less involved in choline uptake than in GABA uptake. A kinetic analysis of sodium-dependent high affinity choline uptake was performed after all treatments. We found changes in Vmax, after all treatments, which were consistently in the same direction as the alterations in activity. The proposal is made that the sodium-dependent high affinity choline uptake is coupled to cholinergic activity in such a way as to regulate the entry of choline for the maintenance of acetylcholine synthesis. The findings also lead us to propose that sodium-dependent high affinity choline uptake in vitro be utilized as a rapid, relative measure of the activity of cholinergic nerve terminals in vivo.  相似文献   

3.
阿尔茨海默病主要病理学特征是在脑中形成大量的老年斑和神经元纤维缠结以及出现弥漫性脑萎缩.胆碱能系统的失调与阿尔茨海默病的发生机制关系密切.具体表现为基底前脑的胆碱能系统紊乱,胆碱乙酰化酶、乙酰胆碱含量显著减少,以及大量胆碱能神经元退化.胆碱转运体是胆碱能系统中用于转运胆碱进入细胞的关键蛋白体,有三种类型:高亲和力胆碱转运体、胆碱转运体类蛋白及非特异性有机阳离子转运体.近年,很多研究表明胆碱转运体的异常与一系列神经退行性紊乱有关.本文简要综述胆碱能系统中胆碱转运体的生理作用及其在阿尔茨海默病中异常代谢和可能机制的研究进展,以期为防治阿尔茨海默病提供进一步的理论和实验依据.  相似文献   

4.
Defining the contribution of acetylcholine to specific behaviors has been challenging, mainly because of the difficulty in generating suitable animal models of cholinergic dysfunction. We have recently shown that, by targeting the vesicular acetylcholine transporter (VAChT) gene, it is possible to generate genetically modified mice with cholinergic deficiency. Here we describe novel VAChT mutant lines. VAChT gene is embedded within the first intron of the choline acetyltransferase (ChAT) gene, which provides a unique arrangement and regulation for these two genes. We generated a VAChT allele that is flanked by loxP sequences and carries the resistance cassette placed in a ChAT intronic region (FloxNeo allele). We show that mice with the FloxNeo allele exhibit differential VAChT expression in distinct neuronal populations. These mice show relatively intact VAChT expression in somatomotor cholinergic neurons, but pronounced decrease in other cholinergic neurons in the brain. VAChT mutant mice present preserved neuromuscular function, but altered brain cholinergic function and are hyperactive. Genetic removal of the resistance cassette rescues VAChT expression and the hyperactivity phenotype. These results suggest that release of ACh in the brain is normally required to "turn down" neuronal circuits controlling locomotion.  相似文献   

5.
Previous clinical and experimental work has shown that increased dietary intake of choline elevates blood choline and brain acetylcholine levels. This change in neuronal acetylcholine concentration may augment learning and memory functions. We tested this prediction using the mollusc Limax maximus, an animal which can be readily conditioned to avoid food odors. In our experiments, initial learning of a food avoidance task was not augmented by the high choline diet. However, the duration of memory retention was prolonged. In previous studies, we have shown that intake of the choline enriched diet significantly increases blood choline and amplifies transmission at an identified cholinergic synapse in Limax. Together, these results support the involvement of cholinergic synapses in the memory retention mechanism.  相似文献   

6.
Abstract: The effects of Al on the central cholinergic system have been studied. Al, at a dose of 10 mg/kg of body weight/day for 4 weeks, had a deleterious effect on the activities of biosynthetic (choline acetyltransferase) and hydrolytic (acetylcholinesterase) enzymes of the neurotransmitter acetylcholine. The levels of acetylcholine were also significantly lowered in different brain regions at the end of the dose regimen. There was a significant decrease in high-affinity choline uptake following Al exposure. Muscarinic acetylcholine receptor binding studies revealed a decreased number of binding sites ( B max), with the maximum effects being manifested in the hippocampus. Exogenous addition of 10 µ M desferrioxamine restored the muscarinic receptor binding completely. The impaired cholinergic functioning had severe effects on cognitive functions. Neurobehavioral deficits were manifested in terms of decreased active (52%) and passive (73.30%) avoidance tests. The results suggest that Al exerts its toxic effects by altering cholinergic transmission, which is ultimately reflected in neurobehavioral deficits.  相似文献   

7.
Abstract: The components of the cholinergic nervous system, i.e., choline acetyltransferase, acetylcholinesterase, sodium-dependent high-affinity choline uptake, acetylcholine, and the muscarinic acetylcholine receptors, in the developing archi- and paleocerebellum of the rat have been investigated by biochemical methods. A close correlation between the development of the different elements of the system has been demonstrated in the two areas. The cholinergic structure develops first in the archicerebellum, which displays high levels of choline acetyltransferase, acetylcholinesterase, acetylcholine, and sodium-dependent high-affinity choline uptake. The paleocerebellum receives a sparser cholinergic innervation during development. The differences in the values for these components in the cerebellum as a whole may reflect the development of cholinergic and noncholinergic neuronal structures. It is concluded that the development of the cholinergic system cannot be analyzed in the cerebellum as a whole; rather specific regions such as the archi-, paleo-, or neocerebellum must be examined.  相似文献   

8.
[3H]Hemicholinium-3 (HC-3) was used to label sodium-dependent, high-affinity choline uptake sites in regions of rat brain. Autoradiography revealed a high density of [3H]HC-3 binding sites in brain regions with a high density of cholinergic terminals, such as the interpeduncular nucleus, caudate-putamen, and olfactory tubercle. This distribution of [3H]HC-3 binding sites was in close agreement with the amounts of choline acetyltransferase in specific nuclei and subregions of rat brain. Destruction of presynaptic cholinergic projections in the cerebral cortex and the basal ganglia by injection of excitotoxins reduced [3H]HC-3 binding by 40-50%. These data indicate that sodium-dependent [3H]HC-3 binding sites are related to the choline transport system present in cholinergic neurons.  相似文献   

9.
Kawashima K  Fujii T 《Life sciences》2003,74(6):675-696
Lymphocytes express most of the cholinergic components found in the nervous system, including acetylcholine (ACh), choline acetyltransferase (ChAT), high affinity choline transporter, muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively), and acetylcholinesterase. Stimulation of T and B cells with ACh or another mAChR agonist elicits intracellular Ca2+ signaling, up-regulation of c-fos expression, increased nitric oxide synthesis and IL-2-induced signal transduction, probably via M3 and M5 mAChR-mediated pathways. Acute stimulation of nAChRs with ACh or nicotine causes rapid and transient Ca2+ signaling in T and B cells, probably via alpha7 nAChR subunit-mediated pathways. Chronic nicotine stimulation, by contrast, down-regulates nAChR expression and suppresses T cell activity. Activation of T cells with phytohemagglutinin or antibodies against cell surface molecules enhances lymphocytic cholinergic transmission by activating expression of ChAT and M5 mAChR, which is suggestive of local cholinergic regulation of immune system activity. This idea is supported by the facts that lymphocytic cholinergic activity reflects well the changes in immune system function seen in animal models of immune deficiency and immune acceleration. Collectively, these data provide a compelling picture in which lymphocytes constitute a cholinergic system that is independent of cholinergic nerves, and which is involved in the regulation of immune function.  相似文献   

10.
We report here on the binding properties of [3H]hemicholinium-3, a selective inhibitor of the high-affinity choline uptake process, to human brain membranes. Under the assay conditions described, the binding of [3H]hemicholinium-3 exhibited a dependency of physiological conditions on pH, temperature, and NaCl concentrations. Striatal binding proved to be specific, to a single site, saturable, and reversible, with an apparent KD of 10 nM and a Bmax of 82 fmol/mg of protein. [3H]Hemicholinium-3 specific binding exhibited a pharmacological profile and an ionic dependency suggestive of physiologically relevant interactions and comparable with those reported for the high-affinity choline uptake. Moreover, specific [3H]hemicholinium-3 binding exhibited an uneven regional distribution: striatum much greater than nucleus basalis greater than spinal cord much greater than midbrain = cerebellum greater than or equal to hippocampus greater than neocortex = anterior thalamus greater than posterior thalamus much much greater than white matter. This distribution closely corresponds to the reported activity of both enzymatic cholinergic presynaptic markers and high-affinity choline uptake in mammalian brain. There are no significant differences between these results and those previously found in the rat brain using this radioligand. Our results demonstrate, for the first time, the presence of [3H]hemicholinium-3 binding sites in human brain and strongly support the proposal that this radioligand binds to the carrier site mediating the high-affinity choline uptake process on cholinergic neurons. Thus, [3H]hemicholinium-3 binding may be used in postmortem human brain as a selective and quantifiable marker of the presynaptic cholinergic terminals.  相似文献   

11.
Abstract: Recent studies suggest that apolipoprotein E (apoE) plays a specific role in brain cholinergic function and that the E4 allele of apoE (apoE4), a major risk factor for Alzheimer's disease (AD), may predict the extent of cholinergic dysfunction and the efficacy of cholinergic therapy in this disease. Animal model studies relevant to this hypothesis revealed that apoE-deficient (knockout) mice have working memory impairments that are associated with distinct dysfunction of basal forebrain cholinergic neurons. Cholinergic replacement therapy utilizing M1-selective muscarinic agonists has been proposed as effective treatment for AD patients. In the present study, we examined whether the memory deficits and brain cholinergic deficiency of apoE-deficient mice can be ameliorated by the M1-selective agonist 1-methylpiperidine-4-spiro-(2'-methylthiazoline), [AF150(S)]. Treatment of apoE-deficient mice with AF150(S) for 3 weeks completely abolished their working memory impairments. Furthermore, this reversal of cognitive deficit was associated with a parallel increase of histochemically determined brain choline acetyltransferase and acetylcholinesterase levels and with the recovery of these cholinergic markers back to control levels. These findings show that apoE deficiency-related cognitive and cholinergic deficits can be ameliorated by M1-selective muscarinic treatment. They also provide a novel model system for development and evaluation of therapeutic strategies directed specifically at the AD patients whose condition is attributed to the apoE genotype.  相似文献   

12.
The effects of choline administration on acetylcholine metabolism in the central nervous system are controversial. Although choline supplementation may elevate acetylcholine (ACh) content in brain, turnover studies with labelled choline precursors suggest that systemic choline administration either has no effect or actually diminishes brain ACh synthesis. Since choline supplementation elevates brain choline levels, the apparent decreases in previous turnover studies may reflect dilution of the labelled choline precursor pool rather than altered ACh formation. Therefore, brain ACh formation from [U-14C]glucose was determined after choline supplementation. A two to three fold elevation of brain choline did not alter ACh levels or [U-14C]glucose incorporation into ACh in the cortex, hippocampus or striatum. Although atropine stimulated ACh formation from [U-14C]glucose in hippocampus, two to three fold increases in brain choline did not augment ACh synthesis or content in atropine pretreated animals. Atropine depressed brain regional glucose utilization and this effect was not reversed by choline treatment. These results suggest that shorttern elevation of brain choline does not enhance ACh formation from [U-14C]glucose, and argue against enhanced presynaptic cholinergic function after acute, systemic choline administration.Special issue dedicated to Dr. Louis Sokoloff.  相似文献   

13.
Immunohistochemical techniques were used to study the distribution of cholinergic neurons containing choline acetyltransferase of the common type (cChAT), the synthetic enzyme of acetylcholine, in the central nervous system of the slug Limax maximus and Limax valentianus. Because the antiserum applied here was raised against a recombinant protein encoded by exons 7 and 8 of the rat gene for ChAT, three methods were used in order to validate antibody specificity for the Limax counterpart enzyme. Western blot combined with ChAT activity assay following native gel electrophoresis and immunoprecipitation analysis both indicated that immunoreactive Limax brain molecules were capable of synthesizing acetylcholine. Western blot after denatured gel electrophoresis of Limax brain extracts revealed a single band of about 67kDa. All findings obtained with these three methods clearly indicated that the antiserum effectively recognized Limax cChAT. 1400 neuronal cell bodies positive for cChAT, mainly small to medium-sized, were found in various brain regions in the buccal, cerebral, pleural, parietal, visceral and pedal ganglia. cChAT immunoreactive nerve fibers were distributed extensively in the neuropil, connectives and commissures of these central ganglia. The map of cChAT-positive cells provided here are valuable for understanding the cholinergic mechanism in the slug brain, as well as giving an important hint to clarifying the mechanisms of learning and memory in higher vertebrates including humans.  相似文献   

14.
The enteric nervous system is formed by neural crest cells that proliferate, migrate and colonize the gut. Following colonization, neural crest cells must then differentiate into neurons with markers specific for their neurotransmitter phenotype. Cholinergic neurons, a major neurotransmitter phenotype in the enteric nervous system, are identified by staining for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Historical efforts to visualize cholinergic neurons have been hampered by antibodies with differing specificities to central nervous system versus peripheral nervous system ChAT. We and others have overcome this limitation by using an antibody against placental ChAT, which recognizes both central and peripheral ChAT, to successfully visualize embryonic enteric cholinergic neurons. Additionally, we have compared this antibody to genetic reporters for ChAT and shown that the antibody is more reliable during embryogenesis. This protocol describes a technique for dissecting, fixing and immunostaining of the murine embryonic gastrointestinal tract to visualize enteric nervous system neurotransmitter expression.  相似文献   

15.
A Horita  M A Carino 《Peptides》1990,11(5):1021-1025
Intracerebroventricular (ICV) microinjection of arginine vasopressin (AVP) to pentobarbital-anesthetized rats produced shortening of the duration of narcosis. This analeptic effect was blocked by atropine, indicating the central cholinergic nature of the response. AVP also increased hippocampal sodium-dependent high affinity choline uptake activity that had been depressed by the barbiturate. The AVP analeptic effect was blocked by pretreatment with a V-1 (vasopressor), but not a V-2 (antidiuretic), vasopressin receptor antagonist. These results suggest that ICV AVP produces its analeptic effect by interacting with central V-1 receptors to activate a hippocampal cholinergic arousal system. The cholinergic arousal effect may be a factor in the memory enhancing property of AVP.  相似文献   

16.
Gonadotropin-releasing hormone-synthesizing neurons represent the final common pathway in the hypothalamic regulation of reproduction and their secretory activity is influenced by a variety of neurotransmitters and neuromodulators acting centrally in synaptic afferents to gonadotropin-releasing hormone neurons. The present study examined the anatomical relationship of cholinergic neuronal pathways and gonadotropin-releasing hormone neurons of the preoptic area. The immunocytochemical detection of choline acetyltransferase or vesicular acetylcholine transporter revealed a fine network of cholinergic fibers in this region. At the light microscopic level, the cholinergic axons formed appositions to the gonadotropin-releasing hormone immunoreactive cell bodies and dendrites. Results of electron microscopic studies confirmed the absence of glial interpositions in many of these neuronal contacts. Classical cholinergic synapses, which belonged to the asymmetric category, were only observed rarely on gonadotropin-releasing hormone neurons. The lack of synaptic density in most contacts corroborates previous observations on the cholinergic system elsewhere in the brain. Further, it suggests a dominantly non-synaptic route also in this cholinergic neuronal communication. This study provides direct neuromorphological evidence for the involvement of the cholinergic system in the afferent neuronal regulation of gonadotropin-releasing hormone neurons. The sources of cholinergic afferents and the receptorial mechanisms underlying this interaction will require further clarification.  相似文献   

17.
The so-called “cholinergic hypothesis” assumes that degenerative dysfunction of the cholinergic system originating in the basal forebrain and innervating several cortical regions and the hippocampus, is related to memory impairment and neurodegeneration found in several forms of dementia and in brain aging. Biochemical methods measuring the activity of the key enzyme for acetylcholine synthesis, choline acetyltransferase, have been used for many years as a reliable marker of the integrity or the damage of the cholinergic pathways. Stereologic counting of the basal forebrain cholinergic cell bodies, has been additionally used to assess neurodegenerative changes of the forebrain cholinergic system. While initially believed to mark relatively early stages of disease, cholinergic dysfunction is at present considered to occur in advanced dementia of Alzheimer’s type, while its involvement in mild and prodromal stages of the disease has been questioned. The issue is relevant to better understand the neuropathological basis of the diseases, but it is also of primary importance for therapy. During the last few years, indeed, cholinergic replacement therapies, mainly based on the use of acetylcholinesterase inhibitors to increase synaptic availability of acetylcholine, have been exploited on the assumption that they could ameliorate the progression of the dementia from its initial stages. In the present paper, we review data from human studies, as well as from animal models of Alzheimer’s and Down’s diseases, focusing on different ways to evaluate cholinergic dysfunction, also in relation to the time point at which these dysfunctions can be demonstrated, and on some discrepancy arising from the use of different methodological approaches. The reviewed literature, as well as some recent data from our laboratories on a mouse model of Down’s syndrome, stress the importance of performing biochemical evaluation of choline acetyltransferase activity to assess cholinergic dysfunction both in humans and in animal models. Special issue article in honor of Dr. Frode Fonnum.  相似文献   

18.
Oxidative stress is related to the development of central nervous system diseases involving memory processes. Cholinergic system and memory processes are disrupted by ozone exposure. In rats, ozone induces motor disturbances and memory deficits as well as biochemical changes in brain regions related to memory processes. In this work, we analyzed the effect of chronic tibolone (TIB) administration in central nervous system, specifically the content of choline acetyltransferase, acetylcholinesterase, acetylcholine and oxidative stress markers in the hippocampus of male rats exposed to ozone. Our results reveal a neuroprotective effect of TIB treatment on neuronal damage induced by chronic ozone exposure. Furthermore, we suggest that TIB can prevent memory deficits by providing a protective effect against oxidative stress and the cholinergic system disruption induced by ozone exposure. Together, these findings present a potential neuroprotective effect of TIB in processes linked to memory deficits induced by aging or neurodegenerative diseases.  相似文献   

19.
It has been well established that interferon-gamma (IFN-gamma) can modify the immune status of cells in the central nervous system (CNS) by inducing major histocompatibility antigens. Furthermore, it has been shown that endogenous IFN can be produced in the brain following viral infection and a form of IFN-alpha/beta can be produced by astrocytes in culture. Here we show that IFN can induce astrocyte maturation and alter neurotransmitter properties in cultured CNS neurons at a given developmental stage. IFN causes a dose-dependent increase in choline acetyltransferase activity and glial fibrillary acidic protein (GFAP) immunoreactivity in cultures of human embryonic spinal cord neurons. The GABAergic activity and the Thy1 immunoreactivity remain unchanged. IFN-gamma does not act directly on the neurons but via the nonneuronal cells, probably the astrocytes, which in turn stimulate the cholinergic traits. These studies could be important for demonstrating an action of the immune system on glial cell maturation and on the neurotransmitter phenotype expression in CNS neurons.  相似文献   

20.
A compound that can enhance the apparent synthesis of acetylcholine in cultured explants of the medial septal nucleus has been purified from rat brain and identified as phosphoethanolamine. Acetylcholine synthesis is stimulated two- to threefold in cultures grown for 5 days in the presence of phosphoethanolamine, ethanolamine, or cytidine 5'-diphosphoethanolamine at concentrations above 100 microM. This effect appears to result from an increase in the accumulation of choline via the high-affinity, sodium-dependent uptake mechanism. The development of choline acetyltransferase activity is not affected. Phosphoethanolamine and ethanolamine seem to enhance the ability of developing cholinergic neurons to utilize choline accumulated via the sodium-dependent high-affinity choline uptake mechanism for the preferential production of acetylcholine without increasing the general metabolism of the cultures. Choline itself and its related derivatives are not stimulatory for these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号