首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The biochemical strategy of colon tumor was investigated by comparing the enzymic programs of glycolysis, pentose phosphate production and purine and pyrimidine biosynthesis and degradation in liver, normal colon mucosa and transplantable colon adenocarcinoma in the mouse. In normal colon mucosa the carbohydrate and pentose phosphate enzymes were 2- to 9-fold higher in specific activity than those in liver. Among the enzymes of CTP synthesis, CTP synthetase was the rate-limiting one in both liver and colon. In colon tumor CTP synthetase, OMP decarboxylase, uracil phosphoribosyltransferase and thymidine kinase activities increased to 927, 863, 597 and 514% of activities of normal colon. In contrast, the activity of the catabolic enzymes, dihydrothymine dehydrogenase and uridine phosphorylase, decreased to 51 and 25%. The ratios of activities of uridine kinase/uridine phosphorylase and thymidine kinase/dihydrothymine dehydrogenase were elevated 6- and 10-fold. The activity of the key purine synthetic enzyme, glutamine PRPP amidotransferase, increased 7-fold and the opposing rate-limiting enzyme of purine catabolism, xanthine oxidase, decreased to 7%. The ratio of amidotransferase/xanthine oxidase was elevated to 8, 150%. Activities of glucose-6-phosphate dehydrogenase and transaldolase did not increase, but that of pyruvate kinase was elevated to 154%. Similar enzymic programs were observed in a transplantable adenocarcinoma of the colon in the rat. The alterations in gene expression in colon tumor manifested in an integrated pattern of enzymic imbalance indicate the display of a program, a segment of which is shared with rat and human liver and kidney tumors. These alterations in gene expression should confer selective advantages to colon tumor cells. The striking increases in the activities of CTP synthetase, OMP decarboxylase, glutamine PRPP amidotransferase and thymidine kinase mark out these enzymes as potentially sensitive targets for combination chemotherapy by specific inhibitors of these enzyme activities.  相似文献   

2.
Induction studies on pyrimidine metabolizing enzymes in E. coli B have shown that the enzymes fall into three distinct groups according to their induction pattern. a) Cytidine deaminase and uridine phosphorylase, are induced by cytidine, CMP and adenosine; no induction was observed with uridine and AMP; b) thymidine phosphorylase is induced by cytidine, adenosine, all deoxyribonucleosides, CMP, deoxyribonucleotides, deoxyribose and deoxyribose-1-phosphate; c) uridine-cytidine kinase, uracil phosphoribosyltransferase, 5'-nucleotidase, thymidine kinase, are uninducible enzymes. Simultaneous addition of cytidine and glucose partially overcomes the cytidine deaminase and uridine phosphorylase induction. Cytidine deaminase reaches its maximum activity levels, in E. coli growing cells in presence of cytidine, two hours before the uridine phosphorylase activity. Maximum glucose repression of cytidine deaminase and uridine phosphorylase was obtained in correspondence of maximum cytidine induction.  相似文献   

3.
The incorporation of pyrimidine nucleotide precursors into Helicobacter pylori and the activities of enzymes involved in their synthetic pathways were investigated by radioactive tracer analysis and 31P nuclear magnetic resonance spectroscopy. The bacterium was found to take up aspartate and bicarbonate and to incorporate carbon atoms from these precursors into its genomic DNA. Orotate, an intermediate of de novo pyrimidine biosynthesis, and uracil and uridine, precursors for pyrimidine pathways, were also incorporated by the micro-organism. Radiolabelled substrates were used to assess the activities of aspartate transcarbamoylase, orotate phosphoribosyltransferase, orotidylate decarboxylase, CTP synthetase, uracil phosphoribosyltransferase, thymidine kinase and deoxycytidine kinase in bacterial lysates. The study provided evidence for the presence in H. pylori of an operational de novo pathway, and a less active salvage pathway for the biosynthesis of pyrimidine nucleotides.  相似文献   

4.
Evidence is presented for the tight linkage of ribonucleotide reductase activity with normal and neoplastic proliferation. A sensitive and reproducible assay was worked out to measure CDP reductase activity in rat in normal liver and various tissues, hepatomas of different growth rates, kidney tumors and sarcoma and tissue culture cells of hepatoma 3924A. In the standard assay, linear kinetics were obtained and the reductase activity of the rat liver was 23 ± 3 pmol CDP metabolized per hr/mg protein. When hepatoma 3924A tissue culture cells that had accumulated in plateau phase were replated, allowed to go through lag and log phases and again into the plateau phase during a 96-hr period, ribonucleotide reductase activity rose at 6 hr after cells were plated, the activity was maintained at high levels during the first 48-hr period, and returned to the resting level at 72 and 96 hr. This rise was earlier than that of 6 other enzymes of pyrimidine de novo and salvage pathways (thymidine kinase, CTP synthetase, orotidine-5′-phosphate decarboxylase, orotate phosphoribosyltransferase, uridine phosphoribosyltransferase, and uridine-cytidine kinase). The rise in reductase activity was synchronous with the increase in incorporation of cytidine and deoxycytidine in the hepatoma cells. The reductase activity was markedly elevated in kidney tumors (31-fold) and in sarcoma (60-fold) as compared to the kidney cortex and muscle, respectively. In 14 lines of transplantable solid hepatomas, reductase activity was increased from 6.2- to 326-fold of that of normal rat liver. The rise in reductase activity positively correlated with the growth rate of the hepatomas; the behavior of CDP reductase was both transformation- and progression-linked. Reductase activity was also high in differentiating and regenerating liver; thus, it also was linked with normal proliferation. However, the elevation in activity was more marked in the rapidly-growing solid hepatoma 3924A (97-fold) than in normal tissues with the same replicative rate, such as regenerating (56-fold) or differentiating (46-fold) liver. Reductase activity was also high in organs of active cell renewal (thymus, bone marrow, spleen and intestine). Since in the solid hepatomas the levels of the substrate for the reductase, the ribonucleoside diphosphates, were generally unaltered, the marked elevation observed in the concentration of deoxynucleoside triphosphates may be attributed primarily to the early and marked rise in CDP reductase activity.  相似文献   

5.
All six enzymes of pyrimidine biosynthesis de novo have been detected in homogenates of the culture promastigote form of Leishmania mexicana amazonensis, the blood trypomastigote form of Trypanosoma brucei and the culture epimastigote, blood trypomastigote and intracellular form of Trypanosoma cruzi. Dihydroorotate dehydrogenase is mitochondrial in mammals, but the isofunctional enzyme, dihydroorotate oxidase was found to be cytoplasmi, whereas orotate phosphoribosyltransferase and orotidine-5′-phosphate decarboxylase, which are cytoplasmic in mammals, were found to be particulate. Analysis by isopycnic sedimentation in sucrose showed that both particulate enzymes co-sedimented with glycosomal-(microbody-)marker enzymes such as hexokinase. Electron microscopy indicated that fractions containing these activities consisted essentially only of microbodies. It is concluded therefore that these enzymes are associated with glycosomes. Kinetic studies with intact glycosomal preparations suggested that there was no membrane barrier between 5-phosphoribose 1-pyrophosphate (P-Rib-PP) and orotate phosphoribosyltransferase, indicating either that the active site of this enzyme is probably on the outside of the glycosome or that the glycosome may have an efficient transport site for P-Rib-PP. Not all the UMP salvage enzymes assayed were detected. No uridine kinase activity was found in any of the species investigated, suggesting that uridine salvage might be routed via a uridine phosphoribosyltransferase. In agreement with this suggestion, these latter activities were detected in all organisms tested except the intracellular amastigote form of T. cruzi, where uracil phosphoribosyltransferase appeared absent. All the UMP salvage enzymes investigated occurred in cytoplamic fractions.  相似文献   

6.
Pyrimidine Salvage Pathways In Toxoplasma Gondii   总被引:1,自引:0,他引:1  
ABSTRACT. Pyrimidine salvage enzyme activities in cell-free extracts of Toxoplasma gondii were assayed in order to determine which of these enzyme activities are present in these parasites. Enzyme activities that were detected included phosphoribosyltransferase activity towards uracil (but not cytosine or thymine), nucleoside phosphorylase activity towards uridine, deoxyuridine and thymidine (but not cytidine or deoxycytidine), deaminase activity towards cytidine and deoxycytidine (but not cytosine, cytidine 5'-monophosphate or deoxycytidine 5'-monophosphate), and nucleoside 5'-monophosphate phosphohydrolase activity towards all nucleotides tested. No nucleoside kinase or phosphotransferase activity was detected, indicating that T. gondii lack the ability to directly phosphorylate nucleosides. Toxoplasma gondii appear to have a single non-specific uridine phosphorylase enzyme which can catalyze the reversible phosphorolysis of uridine, deoxyuridine and thymidine, and a single cytidine deaminase activity which can deaminate both cytidine and deoxycytidine. These results indicate that pyrimidine salvage in T. gondii probably occurs via the following reactions: cytidine and deoxycytidine are deaminated by cytidine deaminase to uridine and deoxyuridine, respectively; uridine and deoxyuridine are cleaved to uracil by uridine phosphorylase; and uracil is metabolized to uridine 5'-monophosphate by uracil phosphoribosyltransferase. Thus, uridine 5'-monophosphate is the end-product of both de novo pyrimidine biosynthesis and pyrimidine salvage in T. gondii.  相似文献   

7.
The purine and pyrimidine metabolism of Tetrahymena pyriformis   总被引:1,自引:0,他引:1  
The metabolism of purines and pyrimidines by the ciliated protozoan Tetrahymena was investigated with the use of enzymatic assays and radioactive tracers. A survey of enzymes involved in purine metabolism revealed that the activities of inosine and guanosine phosphorylase (purine nucleoside: orthophosphate ribosyltransferase, E.C. 2.4.2.1) were high, but adenosine phosphorylase activity could not be demonstrated. The apparent Km for guanosine in the system catalyzing its phosphorolysis was 4.1 ± 0.6 × 10?3 M. Pyrophosphorylase activities for IMP and GMP (GMP: pyrophosphate phosphoribosyltransferase, E.C. 2.4.2.8), AMP (AMP: pyrophosphate phosphoribosyltransferase, E.C. 2.4.2.7), and 6-mercaptopurine ribonucleotide were also found in this organism; but a number of purine and pyrimidine analogs did not function as substrates for these enzymes. The metabolism of labeled guanine and hypoxanthine by intact cells was consistent with the presence of the phosphorylases and pyrophosphorylases of purine metabolism found by enzymatic studies. Assays for adenosine kinase (ATP: adenosine 5'-phosphotransferase, E.C. 2.7.1.20) inosine kinase, guanosine kinase, xanthine oxidase (xanthine: O2 oxidoreductase, E.C. 1.2.3.2), and GMP reductase (reduced-NADP: GMP oxidoreductase [deaminating], E.C. 1.6.6.8) were all negative. In pyrimidine metabolism, cytidine-deoxycytidine deaminase (cytidine aminohydrolase, E.C. 3.5.4.5), thymidine phosphorylase (thymidine: orthophosphate ribosyltransferase, E.C. 2.4.2.4), and uridine-deoxyuridine phosphorylase (uridine: orthophosphate ribosyltransferase, E.C. 2.4.2.3) were active; but cytidine kinase, uridine kinase (ATP: uridine 5'-phosphotransferase, E.C. 2.7.1.48), and CMP pyrophosphorylase could not be demonstrated.  相似文献   

8.
The biosynthesis of glycosphingolipids and various types of proteins and nucleic acids at specific periods of the cell cycle was studied by using synchronized KB cells. Maximum incorporation of radioactive galactose, leucine and thymidine into several proteins and nucleic acids occurred as has been reported previously (6,11). Maximum incorporation of D-1[14C] galactose into glycosphingolipids was observed during the M and G-1 phases. There was a 5 fold increase in the levels of gangliosides and combined neutral glycosphingolipids during the M and G-1 phases. Thus, regulated biosynthesis of glycosphingolipids and macromolecules might be important in the cyclic expression of some of the functional properties which are characteristic of these compounds.  相似文献   

9.
A series of C-glycosylthiazoles were tested as inhibitors of purine nucleotide biosynthesis in invitro cultures of Ehrlich ascites tumor cells. The thiazole C-nucleoside, 2-β-D-ribofuranosylthiazole-4-carboxamide, demonstrated the only significant activity of the series as a specific inhibitor of guanine nucleotide biosynthesis. At concentrations of 10–1000 μM the compound inhibits the activities of the enzymes IMP dehydrogenase and GDP kinase by 50–60% and 30–60%, respectively. The antiviral agent ribavirin demonstrated a similar pattern of enzyme inhibition at the same range of concentrations. The possible relevance of this inhibition to the recently discovered antitumor properties of 2-β-D-ribofuranosylthiazole-4-carboxamide is discussed.  相似文献   

10.
Summary Strains of Escherichia coli have been selected, which contain mutations in the udk gene, encoding uridine kinase. The gene has been located on the chromosome as cotransducible with the his gene and shown to be responsible for both uridine and cytidine kinase activities in the cell.An additional mutation in the cdd gene (encoding cytidine deaminase) has been introduced, thus rendering the cells unable to metabolize cytidine. In these mutants exogenously added cytidine acts as inducer of nucleoside catabolizing enzymes indicating that cytidine per se is the actual inducer.When the udk, cdd mutants are grown on minimal medium the enzyme levels are considerably higher than in wild type cells. Evidence is presented indicating that the high levels are due to intracellular accumulation of cytidine, which acts as endogenous inducer.Abbreviations and Symbols FU 5-fluorouracil - FUR 5-fluorouridine - FUdR 5-fluoro-2'deoxyuridine - FCR 5-fluorocytidine - FCdR 5-fluorodeoxycytidine - THUR 3, 4, 5, 6-tetrahydrouridine - UMP uridine monophosphate - CMP cytidine monophosphate - dUMP deoxyuridine monophosphate. Genes coding for: cytidine deaminase - edd uridine phosphorylase - udp thymidine phosphorylase - tpp purmnucleoside phosphorylase - pup uridine kinase (=cytidine kinase) - udk UMP-pyrophosphorylase - upp. CytR regulatory gene for cdd, udp, dra, tpp, drm and pup Enzymes EC 2.4.2.1 Purine nucleoside phosphorylase or purine nucleoside: orthophosphate (deoxy)-ribosyltransferase - EC 2.4.2.4 thymidine phosphorylase or thymidine: orthophosphate deoxyribosyltransferase - EC 2.4.2.3 uridine phosphorylase or uridine: orthophosphate ribosyltransferase - EC 3.5.4.5 cytidine deaminase or (deoxy)cytidine aminohydrolase - EC 4.1.2.4 deoxyriboaldolase or 2-deoxy-D-ribose-5-phosphate: acetaldehydelyase - EC 2.4.2.9 UMP-pyrophosphorylase or UMP: pyrophosphate phosphoribosyltransferase - EC 2.7.1.48 uridine kinase or ATP: uridine 5-phosphotransferase  相似文献   

11.
It is proposed that cyclopropane fatty acid biosynthesis in Lactobacillus plantarum is regulated by in vivo variations in the activities of two enzymes acting sequentially. S-adenosylhomocysteine hydrolase relieves the end-product inhibition of cyclopropane synthetase by degrading a product (S-adenosyl-homocysteine) of the latter enzyme activity. Both enzymes show an abrupt increase and subsequent decrease in activity at a time during the bacterial growth cycle which corresponds to the period of most rapid synthesis of cyclopropane fatty acid in vivo.  相似文献   

12.
The activities of 6 folate enzymes were measured in extracts of human diploid skin fibroblasts during the lag, log and stationary phases of the culture cycle. The levels of 4 folate enzymes involved in nucleic acid biosynthesis, viz., folate reductase, serine hydroxymethyltransferase, thymidylate synthetase and 10-formyl-THF synthetase, increased from 2–20 fold during the log phase of growth. In contrast, the levels of 2 enzymes, viz., methylene-THF reductase and 5-methyl-THF: homocysteine methyltransferase, involved in regulating the levels of 5-methyl-THF, the major tissue and serum folate compound, decreased 3–4 fold during log growth, returning to high levels again only after the cells had been in the stationary phase for 5 and 20 days respectively. This reciprocal pattern of change is consistent with the known or postulated functions of these folate enzymes.  相似文献   

13.
The de novo biosynthesis of pyrimidine nucleotides is completed by two sequential enzyme activities that convert orotate plus 5-phosphoribosyl-1-pyrophosphate to orotidine-5′-monophosphate (OMP) and PPi and then decarboxylate OMP to produce 5′-uridylic acid. In mammalian cells the two enzyme activities, orotate phosphoribosyltransferase and orotidine-5′-phosphate decarboxylase, form a normally inseparable enzyme complex. It was previously reported that this complex is able to channel the intermediate product, OMP (Traut, T. W., and Jones, M. E., 1977, J. Biol. Chem.252, 8374–8381). The studies reported here indicate that one advantage of this channeling of OMP is to spare OMP from being degraded to orotidine by a potentially competitive nucleotidase activity. Yeast cells have two separate enzymes instead of an enzyme complex, and lack the ability to channel OMP. The OMP formed in yeast cells is not degraded because these cells lack significant nucleotidase activity. These results suggest that the capability for channeling OMP may have been important in evolving the enzyme complex found in mammalian cells.  相似文献   

14.
In order to examine the biosynthesis, interconversion, and degradation of purine and pyrimidine nucleotides in white spruce cells, radiolabeled adenine, adenosine, inosine, uracil, uridine, and orotic acid were supplied exogenously to the cells and the overall metabolism of these compounds was monitored. [8‐14C]adenine and [8‐14C]adenosine were metabolized to adenylates and part of the adenylates were converted to guanylates and incorporated into both adenine and guanine bases of nucleic acids. A small amount of [8‐14C]inosine was converted into nucleotides and incorporated into both adenine and guanine bases of nucleic acids. High adenosine kinase and adenine phosphoribosyltransferase activities in the extract suggested that adenosine and adenine were converted to AMP by these enzymes. No adenosine nucleosidase activity was detected. Inosine was apparently converted to AMP by inosine kinase and/or a non‐specific nucleoside phosphotransferase. The radioactivity of [8‐14C]adenosine, [8‐14C]adenine, and [8‐14C]inosine was also detected in ureide, especially allantoic acid, and CO2. Among these 3 precursors, the radioactivity from [8‐14C]inosine was predominantly incorporated into CO2. These results suggest the operation of a conventional degradation pathway. Both [2‐14C]uracil and [2‐14C]uridine were converted to uridine nucleotides and incorporated into uracil and cytosine bases of nucleic acids. The salvage enzymes, uridine kinase and uracil phosphoribosyltransferase, were detected in white spruce extracts. [6‐14C]orotic acid, an intermediate of the de novo pyrimidine biosynthesis, was efficiently converted into uridine nucleotides and also incorporated into uracil and cytosine bases of nucleic acids. High activity of orotate phosphoribosyltransferase was observed in the extracts. A large proportion of radioactivity from [2‐14C]uracil was recovered as CO2 and β‐ureidopropionate. Thus, a reductive pathway of uracil degradation is functional in these cells. Therefore, white spruce cells in culture demonstrate both the de novo and salvage pathways of purine and pyrimidine metabolism, as well as some degradation of the substrates into CO2.  相似文献   

15.
In order to investigate the mechanism of glucose repression of the N-acetylglucosamine metabolic enzymes in Candidaalbicans, an obligatory aerobic yeast, the activities of the following inducible enzymes were assayed: the N-acetylglucosamine uptake, N-acetylglucosamine kinase and glucosamine-6-phosphate deaminase. In the presence of glucose or other sugars e.g. succinate and glycerol, synthesis of these enzymes took place at a normal rate, suggesting that the hexose produces no catabolite repression in this organism. On the contrary, strong inhibition by glucose was observed on the activities of N-acetylglucosamine uptake and deaminase in N-acetylglucosamine-grown cells of Saccharomycescerevisiae, a facultative aerobe. From the results, it is concluded that “glucose effect” or catabolite repression is absent in Candidaalbicans, a pathogenic strain of yeast.  相似文献   

16.
Thirteen diversified antimetabolites of coenzyme Q10 which have antitumor activity in vivo were tested for inhibition of uptake of tritiated thymidine and uridine into DNA and RNA, respectively, of L1210 cells grown in tissue culture. Eight of these antimetabolites have inhibitory activities of the same order of magnitude as the used anticancer drugs, rubidazone and ellipticine. 5-ω-Phenylpropylmercapto-2,3-dimethoxy-1,4-benzoquinone was particularly potent to inhibit nucleic acid synthesis; ED50 for DNA = 2.1 μM and ED50 for RNA = 4.0 μM.  相似文献   

17.
Candida guilliermondii produced β-phenethyl alcohol and β-phenyllactic acid when grown in a synthetic medium containing L-phenylalanine as sole source of nitrogen. The cell-free preparations from these cells showed the following enzymes: phenylalanine aminotransferase, phenylpyruvate decarboxylase, phenylpyruvate reductase and phenylacetaldehyde reductase. The cell-free preparations of C. guilliermondii grown in medium with ammonium sulfate, lacked these enzyme activities, indicating the inducible nature of these enzymes. The results indicate the role of β-phenylpyruvate as a key intermediate in the pathway of biosynthesis of β-phenethyl alcohol and β-phenyllactic acid from L-phenylalanine.  相似文献   

18.
The topography of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol biosynthetic enzymes within the transverse plane of rat liver microsomes was investigated using two impermeant inhibitors, mercury-dextran and dextran-maleimide. Between 70 and 98% of the activities of fatty acid : CoA ligase (EC 6.2.1.3), sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15), phosphatidic acid phosphatase (EC 3.1.3.4), diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) were inactivated by mercury-dextran. Dextran-maleimide caused 52% inactivation of the sn-glycerol-3-phosphate acyltransferase. Inactivation of each of these activities except fatty acid : CoA ligase occurred in microsomal vesicles which remained intact as evidenced by the maintenance of highly latent mannose-6-phosphatase activity (EC 3.1.3.9). These glycerolipid biosynthetic activities were not latent, indicating that substrates have free access to the active sites. Moreover, ATP, CDP-choline and CMP appeared unable to penetrate the microsome membrane. These data indicate that the active sites of these enzymes are located on the external surface of microsomal vesicles.It is concluded that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum.  相似文献   

19.
Biosynthesis and scavenging of pyrimidines by pathogenic mycobacteria   总被引:1,自引:0,他引:1  
Mycobacterium microti incorporated a wide range of exogenously supplied pyrimidines into its nucleic acids. M. avium incorporated a relatively narrow range of pyrimidines but both M. avium and M. microti when recovered after growth in vivo incorporated a slightly wider range of pyrimidines than the same strains grown in vitro. M. microti and M. leprae could not take up uridine nucleotides directly but could utilize the pyrimidines by hydrolysing them to uridine and then taking up the uridine. Pyrimidine biosynthesis, judged by the ability to incorporate carbon from CO2 or aspartate into pyrimidines was readily detected in non-growing suspensions of M. microti and M. avium harvested from Dubos medium, which does not contain pyrimidines. The biosynthetic activity was diminished in mycobacteria grown in vivo when there is likely to be a source of pyrimidines which they might use. Relative activities for pyrimidine biosynthesis de novo in M. microti were 100 for cells isolated from Dubos medium, 6 for cells isolated from Dubos medium containing the pyrimidine cytidine and 11 from cells recovered after growth in mice. In contrast, relative activities for a scavenging reaction, uracil incorporation, were 100, 71 and 59, respectively. Three key enzymes in the pathway of pyrimidine biosynthesis de novo were detected in M. microti and M. avium. Two, dihydroorotate synthase and orotate phosphoribosyltransferase appeared to be constitutive in M. microti and M. avium. Aspartate transcarbamoylase activity was higher in these mycobacteria grown in vivo than in Dubos medium but it was repressed in M. microti or M. avium grown in Dubos medium in the presence of 50 microM-pyrimidine. Aspartate transcarbamoylase was strongly inhibited by the feedback inhibitors ATP, CTP and UTP. Enzymes for scavenging pyrimidines were detected at low specific activities in all mycobacteria studied. Activities of phosphoribosyltransferases, enzymes that convert bases directly to nucleotides, were not related to the ability of intact mycobacteria to take up pyrimidine bases while activities of pyrimidine nucleoside kinases were generally related to the ability of intact mycobacteria to take up nucleosides. Phosphoribosyltransferase activity for uracil, cytosine, orotic acid and--in organisms grown in Dubos medium with 50 microM-uridine-thymine, as well as kinases for uridine, deoxyuridine, cytidine and thymidine were detected in M. microti. However, M. avium only contained uracil and orotate phosphoribosyltransferase, uridine, cytidine and thymidine kinase, and additionally deoxyuridine kinase when grown axenically with 50 microM-uracil, reflecting its more limited abilities in pyrimidine scavenging.  相似文献   

20.
The initial membrane reaction in the biosynthesis of peptidoglycan is catalyzed by phospho-N-acetylmuramyl (MurNAc)-pentapeptide translocase (UDP-MurNAc-Ala-γ dGlu-Lys-dAla-dAla undecaprenyl phosphate phospho-MurN Acpentapeptide transferase). In addition to the transfer reaction, the enzyme catalyzes the exchange of [3H]uridine monophosphate with the uridine monophosphate moiety of UDP-MurN Ac-pentapeptide. Two distinct discontinuities are observed in the slopes of the Arrhenius plots of the exchange and transfer activities at 22 and 30°C for the enzyme from Staphylococcus aureus Copenhagen. Anisotropy measurements of perylene fluorescence and electron spin resonance measurements of N-oxyl-4′,4′-dimethyloxazolidine derivatives of 12-and 16-ketostearic acid intercalated into membranes from this organism define the lower (T1 = 16–22°C) and upper (Th = 30°C) boundaries of a phase transition. These values correlate with the discontinuities observed for the activity measurements. Thus, it is proposed that the physical state of the lipid micro-environment of phospho-MurN Ac-pentapeptide translocase has a significant effect on the catalytic activity of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号