首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Des-tyrosine-γ-endorphin, a β-endorphin fragment with neuroleptic-like properties, was digested with a cSPM fraction of rat brain. A profile of metabolites and a time course of conversion were obtained by HPLC analysis of the digests. Quantitative amino acid analysis and a second HPLC fractionation step which was designed to separate and to identify very similar des-tyrosine-γ-endorphin fragments, combined with dansyl end group determination allowed the characterization of β-LPH 65–77, β-LPH 66–77 and β-LPH 62–73 as main conversion products. In the digests the C-terminal leucyl peptides β-LPH 67–77 and β-LPH 68–77 as well as the N-terminal glycyl peptides β-LPH 62–74 and β-LPH 62–76 were minor components. The data indicate the involvement of several types of peptidase activities in the conversion process. It is suggested that these peptidases have a role in mediating in vivo des-tyrosine-γ-endorphin effects. In addition, this study points to the capacity of the brain to gene-rate small peptides with neuroleptic-like properties.  相似文献   

2.
The influence of chronic morphine exposure in vitro on the biotransformation of β-endorphin (βE) was investigated using the myenteric plexus-longitudinal muscle of guinea-pig ileum. A membrane preparation was incubated with βE and the degradation of βE as well as the accumulation of several βE fragments in the incubation medium were followed with time. The levels of peptides were determined by specific radioimmunoassays after separation by high-pressure liquid chromatography. It was found that exposure to morphine did not affect the disappearance of βE, but altered the time course of accumulation of βE fragments. In fact, the accumulation of γ-endorphin, α-endorphin and des-tyrosine1-α-endorphin was enhanced, while that of des-tyrosine1-γ-endorphin was not changed. Additionally, the disappearance of γ-endorphin appeared to be stimulated by morphine exposure. These data provide evidence that the fragmentation of βE is changed by chronic morphine exposure in such a way that the turn-over of γ-endorphin is increased.  相似文献   

3.
A. Dray  R. Metsch  T.P. Davis 《Peptides》1984,5(3):645-647
The involvement of endogenous opioid mechanisms in the central neurogenic control of urinary bladder function has been examined in anesthetized rats. Intracerebroventricular (ICV) microinjection of β-endorphin (0.5–2.0 μg) produced powerful inhibition of rhythmic bladder contractions initiated by central reflex activity. The peptide fragments γ-endorphin and α-endorphin (4–16 μg), formed by the processing of β-endorphin by membrane homogenates of brain, were less active than the parent compound. The inhibitory effects of β-endorphin was reversed by ICV naloxone (1–2 μg) but higher doses were required to reverse γ- or α-endorphin effects. ICV naloxone administered alone increased intravesicular pressure and bladder contraction frequency. These observations support the hypothesis that the endorphins have a physiological role in the central regulation of urinary bladder activity.  相似文献   

4.
Using radioimmunoassay technique β-endorphin levels were measured in the plasma of women undergoing labour and partirition and in the plasma of their neonates. The level of immunoreactive β-endorphin in the plasma of women undergoing labour was found to be significantly elevated (mean values: 38–135 fmoles/ml) above the levels found in non-pregnant women (mean values: 5–10 fmoles/ml). After birth, the level of β-endorphin-like immunoreactivity in maternal venous plasma was significantly higher than that in the umbilical vein and artery plasma of the new-borns, but there was no arterio-venous difference in the neonatal plasma. Since the antiserum used displayed the same avidity for human β-endorphin and β-lipotropin chromatographic separation of the immunoreactive components was performed by gelfiltration. Both peptides were found in the plasma of non-pregnant women, in maternal plasma and in the plasma of the neonates. In addition, high amounts of both peptides were found in the fetal pituitary gland showing that the fetus can probably produce its own peptides.  相似文献   

5.
F C Tortella  A Cowan  M W Adler 《Life sciences》1981,29(10):1039-1045
The effect of acute icv administration of β-endorphin (5–160 μg), D-ala2-D-leu5-enkephalin (DADL; 5–160 μg), D-ala2-met-enkephalinamide (DAME; 10–160 μg), and etorphine (0.05–1.6 μg) on brain excitability was studied by measuring flurothyl seizure thresholds in rats. Each test compound produced a behavioral stupor characterized by muscle rigidity, exophthalmos, and the absence of spontaneous movement. Wet-dog shakes occured only after injection of the opioid peptides. All four compounds produced a dose-related increase in seizure threshold. Naloxone antagonized the behavioral and anticonvulsant effects; the increase in seizure threshold induced by β-endorphin was the most resistant to naloxone. These results indicate that the opioid peptides, in addition to their known EEG epileptogenic potential, are also anticonvulsant in the rat, thus raising the possibility of a dual action for the opioid peptides on central nervous system excitability.  相似文献   

6.
Corticotrophic activity of opiate-like peptides was assessed by their ability to stimulate the formation of C21 steroids from [3H] progesterone by three-day old cultures of fetal calf adrenal cells. ACTH1–39, ACTHα1–24 and a purified preparation of pituitary ovine β-endorphin caused a marked increase in 17α and 21-hydroxylation while a preparation of pure synthetic porcine β-endorphin gave a minimal stimulation. The activity of the purified ovine β-endorphin preparation could not be accounted for by contamination by ACTH or by a synergistic action between the two peptides. The novel pituitary factor described here may be due to a contaminant of the β-endorphin peak which is different from ACTH1–39.  相似文献   

7.
beta-Endorphin in human plasma: basal and pathologically elevated levels.   总被引:5,自引:0,他引:5  
β-Endorphin-like immunoreactivity was measured in plasma of normal human subjects and in plasma of patients with pathologically elevated ACTH levels. The antiserum used displayed the same avidity for human β-endorphin and human β-lipotropin (detection limit for both peptides 1–2 fmoles/tube). Gel chromatography of the immunoreactive components in plasma of normal subjects indicated the presence of both β-lipotropin (2.1 -10.1 fmoles/ml) and β-endorphin (3.5–6.4 fmoles/ml). A close correlation between immunoreactive β-endorphin and ACTH was found in plasma of patients suffering from Addison's disease, Cushing's disease and exhibiting Nelson's syndrome. Elevated levels of β-endorphin-like immunoreactivity in plasma of these patients were due to both β-lipotropin and β-endorphin.  相似文献   

8.
The opioid peptide (porcine) β-endorphin has been tritiated using reductive methylation to prepare a derivative containing mainly [3H]dimethyllysine. The tritiated β-endorphin has a specific activity of 9.8 Ci/mmol and is stable for an extended period of time. The labeled peptide binds reversibly to rat brain membrane preparations with a dissociation constant of 0.4 ± 0.1 nM and a receptor content of 23 ± 2 pmol/g brain. Under the conditions used, there is evidence for only one class of receptors. The technique employed for tritium labeling of β-endorphin should also be applicable to various other peptides including α-endorphin, γ-endorphin, and C′-fragment that have been found in brain and pituitary.  相似文献   

9.
Putative enkephalin precursors in bovine adrenal medulla.   总被引:16,自引:0,他引:16  
Extracts from bovine adrenal medulla and adrenal medullary chromaffin granules were found to contain three proteins, 20,000, 10,000 and 5,000 approximate molecular weights which yield tryptic peptides with opioid activity. The opioid activity of these peptides was demonstrated with a radioreceptor assay and two radioimmunoassays. The three proteins yield the same active peptides all of which are chromatographically distinct from the tryptic opioid nonapeptide β-LPH 61–69, generated by trypsin digestion of pituitary endorphins and their precursors. Furthermore, these endorphins and their precursors do not appear to be present in the adrenal medulla. These findings further support the hypothesis that the enkephalin biosynthetic pathway is distinct from that leading to β-endorphin.  相似文献   

10.
Acetylation at the α-amino terminal is a common post-translational modification of many peptides and proteins. In the case of the potent opiate peptide β-endorphin, α-N-acetylation is a known physiological modification that abolishes opiate activity. Since there are no known receptors for α-N-acetyl-β-endorphin, we have studied the association of this peptide with calmodulin, a calcium-dependent protein that binds a variety of peptides, phenothiazines, and enzymes, as a model system for studying acetylated endorphin-protein interactions. Association of the acetylated peptide with calmodulin was demonstrated by cross-linking with bis(sulfosuccinimidyl)suberate; like β-endorphin, adducts containing 1 mol and 2 mol of acetylated peptide per mole calmodulin were formed. Some of the bound peptides are evidently in relatively close proximity to each other since, in the presence of amidated (i.e., lysine-blocked) calmodulin, cross-linking yielded peptide dimers. The acetylated peptide exhibited no appreciable helicity in aqueous solution, but in trifluoroethanol (TFE) considerable helicity was formed. Also, a mixture of acetylated peptide and calmodulin was characterized by a circular dichroic spectrum indicative of induced helicity. Empirical prediction rules, applied earlier to β-endorphin, suggest that residues 14–24 exhibit α-helix potential. This segment has the potential of forming an amphipathic helix; this structural unit is believed to be important in calmodulin binding. The acetylated peptide was capable of inhibiting the calmodulin-mediated stimulation of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity with an effective dose for 50% inhibition of about 3 µM; this inhibitory effect was demonstrated using both an enzyme-enriched preparation as well as highly purified enzyme. Thus, acetylation at the α-amino terminal of β-endorphin, although abolishing opiate activity, does not interfere with the binding to calmodulin. Indeed, β-endorphin and the α-N-acetylated peptide behave very similarly with respect to calmodulin association.  相似文献   

11.
The brain levels of β-endorphin, α-endorphin and enkephalin were measured by radioimmunoassay after different methods of sacrifice. Microwave irradiation proved not to be better than decapitation followed by boiling of the intact tissue, the latter procedure giving values of β-endorphin 10 fold higher than decapitation alone. Concurrently when decapitation was followed by boiling, α-endorphin was no longer detected. Evaluation in brain tissue of several extraction media--phosphate buffered saline, 5% TCA, HCl methanol, and 1N HOAc--showed the last to be the most satisfactory for both β-endorphin and enkephalin. Since β-endorphin was found to be readily hydrolized by brain homogenates with consequent appearance of α-endorphin, these results indicate that disruption of tissue modifies the content of opioid peptides in brain.  相似文献   

12.
Radioimmunoassays (RIAs) specific for β-LPH1–47, β-endorphin, α-MSH and β-MSH have been used to identify immunoreactive components in acid extracts from anterior and intermediate lobes of bovine pituitary gland after separation by chromatography on Sephadex G-50. When components in extracts of both lobes, eluting at the same position, were measured with the β-endorphin and β-LPH1–47 RIA systems, marked quantitative differences were seen. The main components reacting with the β-LPH1–47 system in anterior pituitary extract co-migrated with β-LPH and γ-LPH while in the intermediate lobe, the main immunoreactive component eluted at a position slightly later than β-endorphin. When the β-endorphin RIA system was used, relatively low amounts of immunoreactive material co-migrating with β-endorphin were seen in the anterior lobe extract while a highly predominant peak eluting at a position slightly later than β-endorphin was observed in intermediate lobe extract. Some β-MSH was seen in the intermediate lobe. These date indicate that the processing of β-LPH is markedly different in the anterior and intermediate bovine pituitary lobes: β-endorphin immunoreactive material predominates in the intermediate lobe whereas β-LPH and γ-LPH predominate in the anterior lobe.  相似文献   

13.
Neuroblastoma × glioma hybrid cells (NG108CC15) were examined for the presence of β-endorphin-like material. In order to differentiate this β-endorphin-like material from crude cell extract, a procedure for immunoaffinity chromatography was developed. The monoclonal antibody 3-E7 employed possesses the unique property of recognizing the N-terminal sequence of virtually all endogenous opioid peptides, but not their precursors. By means of this immunoaffinity procedure about 90% of exogenous β-endorphin was recovered from 10 ml phosphate buffered saline samples. Affinity chromatography served as first-step purification of crude NG108CC15 cell extract for the separation and concentration of β-endorphin-like material. The eluate of the immunoaffinity gel was subjected either to Sephadex gel filtration or to high pressure liquid chromatography. Under either condition, immunoreactive β-endorphin which eluted with synthetic β-endorphin was detected. The concentration in six different batches varied from 4 to 17 fmol/108 cells. This would be 10–200-fold lower than that observed for the enkephalins or dynorphin A/α-neo-endorphin. It is concluded that the utilization of the monoclonal antibody 3-E7 for a first-step purification of cell extracts was an essential pre-requisite for the separation of β-endorphin-like material from the hybrid cells. The presence of enkephalin-like material, of dynorphin A/α-neo-endorphin-like material and of β-endorphin immunoreactive material suggests that NG108CC15 cells are able to generate opioid peptides related to the precursors pre-proenkephalin A, pre-proenkephalin B and pro-opiomelanocortin.  相似文献   

14.
Abstract: Antibodies specific for α-N-acetyl-β-endorphins have been prepared by injecting into rabbits either α-N-acetyl-β-endorphin(1-31) or [α-N-acetyl, ε-acetyl-Lys9]-β-endorphin(1-9) linked by carbodiimide to bovine thyroglobulin. Both antisera were used to develop specific radioimmunoassays for α-N-acetyl-β-endorphins. The radioimmunoassays were used to measure α-N-acetylated β-endorphins in extracts of pituitary regions from different species. By comparison of the amounts of total β-endorphin and α-N-acetyl-β-endorphin immunoreactivity, a relative ratio of β-endorphin acetylation was obtained. The relative acetylation of β-endorphin was highest in rat posterior-intermediate lobe extracts (>90%). Beef and monkey intermediate lobes had a lower degree of acetylation (53 and 31%, respectively). Anterior lobe extracts from all three species contained low amounts of acetylated β-endorphin. Human pituitary extracts did not contain acetylated β-endorphins. By the use of cation exchange and high performance liquid chromatography, six different acetylated derivatives and fragments of β-endorphin were resolved in extracts of rat posterior-intermediate pituitaries. Two of these peptides corresponded to α-N-acetyl-β-endorphin(1-31) and -(1-27). One acetylated β-endorphin fragment had the same size as α-N-acetyl-β-endorphin(1-27) but was eluted earlier from the cation exchange column. This peptide had full cross-reactivity with antibodies directed against the middle and amino-terminal parts of β-endorphin. Compared with α-N-acetyl-β-endorphin(1-27), it had much less cross-reactivity with antibodies directed against the COOH-terminal part of β-endorphin, suggesting that it was a COOH-terminally modified derivative of β-endorphin(1-27). The remaining N-acetylated β-endorphin derivatives were eluted even earlier from the cation exchange column. The majority of these fragments were slightly larger in size than y-endorphin, i.e., β-endorphin(1-17), but smaller than β-endorphin(1-27). They had full cross-reactivity in an amino-terminally directed β-endorphin radioimmunoassay and a greatly diminished cross-reactivity with antibodies to the middle region of β-endorphin.  相似文献   

15.
It has been found that β-endorphin modulation of lymphocyte proliferative activity in male donors is mainly observed at a relatively young age (in groups aged 20–29 and 30–39 years), it gradually becomes lower with age, and disappears in donors at aged 50–60 years. At the same time, women have a prolonged modulating effect of peptide on proliferation. In women aged 50–59 years, the peptide has a marked promotional effect on spontaneous proliferation at concentrations of 10?7, 10?8, and 10?10 M induced by a suboptimal concentration of phytohemagglutinin (PHA) at 10?10 M, while in women aged 30–39 years, β-endorphin suppresses PHA-induced proliferative response. In men aged 20–29 years, β-endorphin stimulates the uptake capacity of neutrophils, whereas in those aged 50–59 years, this capacity is suppressed by β-endorphin. In female donors from any age groups, β-endorphin was not found to influence the activity of neurophils.  相似文献   

16.
The tritium-labeled selective agonist of the nonopioid β-endorphin receptor the decapeptide immunorphin ([3H]SLTCLVKGFY) with a specific activity of 24 Ci/mmol was prepared. It was shown that [3H]immunorphin binds with a high affinity to the non-opioid β-endorphin receptor of mouse peritoneal macrophages (K d 2.4 ± 0.1 nM). The specific binding of [3H]immunorphin to macrophages was inhibited by unlabeled β-endorphin (K i of the [3H]immunorphin-receptor complex 2.9 ± 0.2 nM) and was not inhibited by unlabeled naloxone, α-endorphin, γ-endorphin, and [Met5]enkephalin (K i > 10 μM). Thirty fragments of β-endorphin were synthesized, and their ability to inhibit the specific binding of [3H]immunorphin to macrophages was studied. It was found that the shortest peptide having practically the same inhibitory activity as β-endorphin is its fragment 12–19 (K i 3.1 ± 0.3 nM).  相似文献   

17.
Intraventricular administration of the endogenous opioid peptide β-endorphin produces a profound state of immobilization in rats characterized by the absence of spontaneous movement, loss of the righting response and extreme generalized muscular rigidity. The immobility syndrome induced by the opioid peptides β-endorphin and D-Met2-Pro5-enkephalinamide was compared with the behavioral profile prodced by subcutaneous and intraventricular administration of the opiates, morphine, methadone and etonitazene. The results indicate a close similarity between the pattern of effects caused by the opiates and opioid peptides. The immobility syndrome could also be produced by injection of β-endorphin into the ventromedial periaqueductal gray, but not into the caudate, globus pallidus, amygdala or dorsolateral periaqueductal gray. The resemblance between the opiate- and β-endorphin-induced profiles suggests that their effects are mediated through common mechanisms.  相似文献   

18.
The isoelectric point of the camel and the human β-endorphin, of the α-endorphin and the enkephalins were determined by analytical isoelectric focusing on 1 mm thin polyacrylamide gel slab. The difficulty of staining peptides as short as β-endorphin or smaller was overcomed using a modification of Bibring and Baxandall's or Faupel and Von Arx's staining method. The camel β-endorphin gives two bands having isoelectric point of 10.3 and 10.4, the human β-endorphin focus at pH 9.9, while α-endorphin, leu and met-enkephalin at pH 5.9, 5.5 and 5.45 respectively. The staining method described coupled with the isoelectric focusing seems to be fit for discriminating β-endorphin in a crude rat pituitary extract.  相似文献   

19.
Enkephalins, endorphins and related peptides were determined in pituitary and brain tissue of rats which were killed by decapitation or microwave irradiation. The tissues were heated in 1M acetic acid prior to homogenization and the levels of the various peptides were measured by means of a combination of HPLC and radioimmunoassays. Enkephalin levels in pituitary and brain of irradiation-killed rats were much higher as compared to those in tissue of rats sacrificed by decapitation. Similar data were obtained with respect to pituitary levels of γ-endorphin, des-Tyr-γ-endorphin and des- Tyr-α-endorphin. However, brain levels of α- and γ-endorphin and their respective des-Tyr-fragments were not different with the two methods of sacrifice used. The concentrations of β-endorphin in the pituitary gland were similar in rats killed by microwave irradiation and decapitation, but irradiation showed higher β-endorphin levels in the brain than decapitation. These results suggest that β-endorphin fragments like α- and γ-endorphin and des-Tyr-α- and des-Tyr-γ-endorphin are endogenous peptides in the rat pituitary gland and the brain.  相似文献   

20.
The synthesis by solid phase methodology of α-endorphin (Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-OH) and γ-endorphin (Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-Gln-Thr-Pro-Leu-Val-Thr-Leu-OH), two morphinomimetic peptides isolated from pig hypothalamus-pituitary extracts, is described. The sequences of these two peptides correspond to residues 61–76 and 61–77, respectively, of porcine β-lipotropin. The two synthetic compounds were shown to have the same physical, chemical and opiate activity as the respective native substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号