首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
N-Monoacetylputrescine and N8-monoacetylspermidine, metabolites of the naturally occurring polyamines, activate the enzyme ornithine decarboxylase (ODC). When added to cultures of hepatoma (HTC) cells growing in log phase, in concentrations of 5×10?5M and 2.5×10?7M respectively, these substances cause a 3 to 5-fold increase in the activity of ODC with a peak effect at one hour. This previously undescribed stimulating effect is in sharp contrast to the well established suppressing effects of nonacetylated polyamines on ODC activity.  相似文献   

2.
Low concentrations of putrescine (10?5M) blocked ornithine decarboxylase (ODC) in rat hepatoma (HTC) cells in culture, but the lower homologue of putrescine, 1, 3 diaminopropane, had no effect on ornithine decarboxylase at 10?5M. Higher concentrations of both putrescine and 1, 3 diaminopropane induced approximately the same amount of soluble ODC antizyme type inhibitor. When concentrated dialyzed supernatants of cells grown in 10?5M putrescine were treated with 250 mM NaCl and chromatographed on a superfine Sephadex G-75 column, both ODC and inhibitor were recovered. Spermidine, spermine and cadaverine also induced the inhibitor suggesting a low specificity of induction by amines.  相似文献   

3.
The possible role of calcium ions in the induction of ornithine decarboxylase (ODC) in rat hepatoma cells in culture (HTC) has been investigated by manipulating cellular calcium levels as follows: a) use of the calcium chelating agent EGTA to inhibit induction of ODC by dibutyryl cyclic AMP (cAMP), b) addition of Ca++ to reverse the inhibition of cAMP induction of ODC by EGTA, c) use of a calcium ionophore in the presence of Ca++ to induce ODC. In each case there was positive evidence for the participation of Ca++ in the induction of ODC.  相似文献   

4.
A good correlation was observed between the reciprocal of the half-life of ornithine decarboxylase (ODC) activity in the presence of cycloheximide and the relative amount of ODC-antizyme complex to total ODC (free ODC plus complexed ODC) activity in HTC cells examined at various times after cell dilution or change of medium. Pretreatment of cells with putrescine increased the relative amount of ODC-antizyme complex and decreased the half-life of ODC decay. These results suggested that antizyme plays a key role in ODC degradation.  相似文献   

5.
A biphasic induction of ornithine decarboxylase with concomitant increase of intracellular putrescine was seen in growing rat hepatoma cells during each generation period. In non-growing HTC cells no coordinate accumulation of intracellular putrescine followed the unique induction of DDC by dilution into fresh serum-deprived medium. The data together suggest that the biphasic increases of ODC activity occur just before and after DNA synthesis and that a growing HTC cell has a finely regulated cycle of ODC activity. Finally, ODC activity may not always correlate with the intracellular putrescine levels.  相似文献   

6.
7.
8.
Transglutaminase activity measurements in the liver of insulin- and diaminopropane treated chickens showed that insulin enhances activity in the supernatant, but has no effect on the nuclear fraction. In the absence of exogenous Ca++ ions, both fractions were more active, showing that insulin promotes an increase in the available Ca++ ions. No modification was observed after diaminopropane. It follows that changes in ornithine decarboxylase activity previously observed under these conditions are not dependent on transglutaminase activity.  相似文献   

9.
Extremely low concentrations of putrescine, spermidine and spermine added to the extracellular medium of cultures of mammalian cells inhibit the induction of ornithine decarboxylase activity despite 100- to 1,000-fold greater intracellular polyamine concentrations. The diamines, 1,2-diaminoethane, 1,3-diaminopropane, 1,5-diaminopentane, 1,7-diaminoheptane, 1,10-diaminodecane, 1,12-diaminododecane also inhibit ornithine decarboxylase at all concentrations tested (greater than 10?6 M). In contrast, 10?6 M to 10 ?3 M 1,8-diaminooctane, the alkyl analog of spermidine, enhances ornithine decarboxylase activity. The concentraton of putrescine required to inhibit the activity of ornithine decarboxylase by 50% is a characteristic of each cell line; however, it varies by as much as 1,000-fold among the five cell lines we have tested (L1210 leukemic, H35 hepatoma, N18 neuroblastoma, W256 carcinosarcoma and 3T3 fibroblasts). The antizyme to ornithine decarboxylase can be induced in all these cells by high (di)(poly)amine concentrations. Based on these and other experiments we suggest a working hypothesis: that the polyamines regulate ornithine decarboxylase activity through two different sites that may be interrelated; a sensitive membrane-mediated site that responds to minute fluctuations of extracellular polyamine levels and a coarse site which may be intracellular or membrane associated that responds to larger fluctuations of intracellular polyamine levels. The consequences of such a control mechanism operating within the whole organism are discussed.  相似文献   

10.
1. Ornithine decarboxylase activity is stimulated in high-density HeLa-cell cultures by dilution of or replacement of spent culture medium with fresh medium containing 10% (v/v) horse serum. 2. After stimulation, ornithine decarboxylase activity reaches a peak at 4–6h, then rapidly declines to the low enzyme activity characteristic of quiescent cultures, where it remains during the remainder of the cell cycle. 3. The stimulation of ornithine decarboxylase is eliminated by the addition of 0.5μm-spermine or -spermidine or 10μm-putrescine to the HeLa-cell cultures at the time of re-feeding with fresh medium. Much higher concentrations (1mm) of the non-physiological diamines, 1,3-diamino-propane or 1,3-diamino-2-hydroxypropane, are required to eliminate the stimulation of ornithine decarboxylase in re-fed HeLa-cell cultures. 4. A heat-labile, non-diffusible inhibitor, comparable with the inhibitory protein ornithine decarboxylase antizyme, is induced in HeLa cells by the addition of exogenous diamines or polyamines. 5. Intracellular putrescine is eliminated, intracellular spermidine and spermine are severely decreased and proliferation of HeLa cells is inhibited when cultures are maintained for 48h in the presence of the non-physiological inducer of ornithine decarboxylase antizyme, 1,3-diamino-2-hydroxypropane. Exogenous putrescine, a physiological inducer of the antizyme, does not decrease intracellular polyamines or interfere with proliferation of HeLa cells.  相似文献   

11.
Rat liver ornithine decarboxylase activity was decreased by administration of putrescine (1,4-diaminobutane) or other diamines, including 1,3-diaminopropane, 1,5-diaminopentane and 1,6-diaminohexane. This effect was seen in control rats and in rats in which hepatic ornithine decarboxylase activity had been increased by administration of growth hormone (somatotropin) or thioacetamide. Loss of activity was not dependent on the conversion of putrescine into polyamines and was short-lived. Within 6h after intraperitoneal administration of 0.8 mmol/kg body wt., ornithine decarboxylase activity had returned to normal values. This return correlated with the rapid loss of the diamines from the liver, and the decrease in activity could be slightly prolonged by treatment with aminoguanidine, a diamine oxidase inhibitor. A decrease in ornithine decarboxylase activity by these diamines was accompanied by the accumulation in the liver of a nondiffusible inhibitor that decreased the activity of a purified ornithine decarboxylase preparation. The possibility that administration of non-physiological diamines that are not converted into polyamines might be useful for the inhibition of polyamine synthesis is discussed.  相似文献   

12.
13.
Hamana K  Nakata K 《Microbios》2000,103(404):43-51
Cellular levels of diaminopropane, putrescine and cadaverine, and decarboxylase activities to produce these diamines in six species (16 strains) of Haemophilus and four species (5 strains) of Actinobacillus belonging to the family Pasteurellaceae of the gamma subclass of the class Proteobacteria, were determined by high performance liquid chromatography (HPLC). Diaminopropane was ubiquitously distributed within all Haemophilus and Actinobacillus species, and L-2,4-diaminobutyric acid decarboxylase activity was detected in them. Putrescine and ornithine decarboxylase activity were found in H. aphrophilus, H. parainfluenzae and H. influenzae (type a, b, d, e and f except for type c) but not detected in H. aegyptius, H. parahaemolyticus, H. ducreyi and Actinobacillus species. Cadaverine occurred in H. aphrophilus, H. aegyptius, H. influenzae, H. parainfluenzae, A. actinomycetemcomitans, A. equuli and A. lignieresii, whereas their lysine decarboxylase activity was scarcely detected. Cadaverine was not found in H. parahaemolyticus, H. ducreyi and A. suis. The diamine profile serves as a phenotypic marker for the chemotaxonomic classification of the family Pasteurellaceae.  相似文献   

14.
1. The induction of ornithine decarboxylase activity in mouse 3T3 fibroblasts or an SV-40 transformed 3T3 cell line by serum was prevented by addition of the naturally occurring polyamines putrescine (butane-1,4-diamine) and spermidine. Much higher concentrations of these amines were required to fully suppress ornithine decarboxylase activity in the transformed SV-3T3 cells than in the 3T3 fibroblasts. 2. Synthetic alpha omega-diamines with 3--12 carbon atoms also prevented the increase in ornithine decarboxylase activity induced by serum in these cells. The longer chain diamines were somewhat more potent than propane-1,3-diamine in this effect, but the synthetic diamines were less active than putrescine in the 3T3 cells. There was little difference between the responses of 3T3 and SV-3T3 cells to the synthetic diamines propane-1,3-diamine and heptane-1,7-diamine. 3. These results are discussed in relation to the control of polyamine synthesis in mammalian cells.  相似文献   

15.
Cultured mouse L1210 leukaemia cells treated with DL-2-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase (EC 4.1.1.17), in the presence of micromolar concentrations of cadaverine, started to overproduce ornithine decarboxylase after an exposure of several weeks. The more than 60-fold excess of the enzyme protein in the drug-treated cells apparently resulted from a strikingly enhanced accumulation of mRNA for the enzyme associated with only a modest (about 2-fold) gene amplification.  相似文献   

16.
Ornithine decarboxylase of HTC cells was chromatographically separated into three ionically distinct but kinetically similar forms of this protein. The sequential appearance of these ornithine decarboxylase species during enzyme induction, and the accumulation of normally minor species under conditions that stabilize this enzyme, suggest that these represent modifications that are associated with the extremely rapid turnover of this protein in vivo. These forms may also be differentially active or unequally distributed in vivo as indicated by the selective inactivation of one of the forms by short exposure to α-difluoromethylornithine.  相似文献   

17.
Under the selective pressure of -α-methylornithine (α-MeOrn), a competitive inhibitor of ornithine decarboxylase (ODC) (EC 4.1.1.17) a clone of rat hepatoma tissue culture (HTC) cells has been isolated and designated HMOA. The growth of this clone is affected by the drug only after a lag period of three generations. The same partial resistance was observed to -α-difluoromethyl ornithine (α-DFMeOrn), an irreversible inhibitor of ODC. HMOA cells showed elevated ODC activity with a concomitant increase of the putrescine content but no change in S-adenosyl- -methionine decarboxylase (SAM-DC) (EC 4.1.1.50) activity. Evidence is given that this overproduction of putrescine may be responsible for the partial resistance of HMOA cells to the anti-proliferative effect of the ODC inhibitors. α-MeOrn increases ODC and SAM-DC activities and α-DFMeOrn raises SAM-DC activity in a time and cell line-dependent manner. These findings may support the concept that intracellular putrescine and spermidine play a direct or indirect regulatory role in the expression of ODC and SAM-DC. Thus, the variant cell should be useful for studies on the genetic regulation of polyamine metabolism in eukaryotic cell systems.  相似文献   

18.
Ornithine decarboxylase isolated from HTC cells was separated into two distinct charged states by salt-gradient elution from DEAE-Sepharose columns. This charge difference between the enzyme forms was maintained in partially purified preparations, but enzyme form II was observed to change to form I in a time-dependent polyamine-stimulated fashion in crude cell homogenates. The enzyme modification that produces this charge diversity between the alternative enzyme states was further investigated for its role in enzyme activity induction, protein stability and rapid turnover. Inhibition of new protein synthesis by cycloheximide resulted in a much more rapid loss of form I enzyme than of form II, suggesting that during normal enzyme turnover the latter enzyme state may be derived from the former. Culture conditions that favour the stabilization of this usually labile enzyme generally induced an increased proportion of the enzyme in the form II charge state. In particular, inhibitors of synthesis of spermidine and spermine induced the stabilization of cellular ornithine decarboxylase and promoted a marked accumulation in form II. Conversely, polyamines added to the cells in culture induced a very rapid loss in both forms of the enzyme, an effect that could not be attributed merely to an inhibition of new enzyme synthesis. It appears that the polyamines, but not putrescine, may be an essential part of the rapid ornithine decarboxylase inactivation process and that they may function in part by stimulating the conversion of the more stable enzyme form II into the less stable enzyme state, form I.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号