共查询到20条相似文献,搜索用时 0 毫秒
1.
Phenothiazine derivatives were examined as potential antagonists of the inhibitory noradrenergic synapses from the nucleus locus coeruleus to rat cerebellar Purkinje cells. Fluphenazine, and its thioxanthine analogue, flupenthixol, antagonized the inhibitory action of norepinephrine, when iontrophoretically applied to single cells. Alpha-flupenthixol was generally more active than the beta isomer. Fluphenazine had no appreciable effect on inhibitions induced by iontophoresis of GABA or cyclic AMP. Parenteral fluphenazine also blocked the inhibition of Purkinje cells produced by the stimulation of the noradrenergic pathway from locus coeruleus, but basket and stellate cell inhibitory inputs to Purkinje cells were unaffected. These data suggest that fluphenazine can specifically block a known central adrenergic inhibitory pathway. 相似文献
2.
Climbing fiber activation of metabotropic glutamate receptors on cerebellar purkinje neurons 总被引:1,自引:0,他引:1
In the cerebellum, metabotropic glutamate receptors (mGluRs) are required for distinct forms of synaptic plasticity expressed at parallel fiber (PF) and climbing fiber (CF) synapses. At PF synapses, mGluR activation generates a slow synaptic current and triggers intracellular calcium release; at CF synapses, mGluR activation has not been observed. This has led some investigators to propose that mGluR-dependent changes in CF synaptic strength are induced heterosynaptically. Here we describe an mGluR-mediated response to CF stimulation consisting of two parallel signaling pathways: one leading to a slow synaptic conductance and the other leading to internal calcium release. This additional target for glutamate broadens the signaling capabilities of CF synapses and raises the possibility that changes in CF strength are homosynaptically triggered. 相似文献
3.
Cell-autonomous death of cerebellar purkinje neurons with autophagy in Niemann-Pick type C disease 总被引:1,自引:0,他引:1
Niemann-Pick type C is a neurodegenerative lysosomal storage disorder caused by mutations in either of two genes, npc1 and npc2. Cells lacking Npc1, which is a transmembrane protein related to the Hedgehog receptor Patched, or Npc2, which is a secreted cholesterol-binding protein, have aberrant organelle trafficking and accumulate large quantities of cholesterol and other lipids. Though the Npc proteins are produced by all cells, cerebellar Purkinje neurons are especially sensitive to loss of Npc function. Since Niemann-Pick type C disease involves circulating molecules such as sterols and steroids and a robust inflammatory response within the brain parenchyma, it is crucial to determine whether external factors affect the survival of Purkinje cells (PCs). We investigated the basis of neurodegeneration in chimeric mice that have functional npc1 in only some cells. Death of mutant npc1 cells was not prevented by neighboring wild-type cells, and wild-type PCs were not poisoned by surrounding mutant npc1 cells. PCs undergoing cell-autonomous degeneration have features consistent with autophagic cell death. Chimeric mice exhibited a remarkable delay and reduction of wasting and ataxia despite their substantial amount of mutant tissue and dying cells, revealing a robust mechanism that partially compensates for massive PC death. 相似文献
4.
5.
Zhao L Spassieva SD Jucius TJ Shultz LD Shick HE Macklin WB Hannun YA Obeid LM Ackerman SL 《PLoS genetics》2011,7(5):e1002063
Sphingolipids, lipids with a common sphingoid base (also termed long chain base) backbone, play essential cellular structural and signaling functions. Alterations of sphingolipid levels have been implicated in many diseases, including neurodegenerative disorders. However, it remains largely unclear whether sphingolipid changes in these diseases are pathological events or homeostatic responses. Furthermore, how changes in sphingolipid homeostasis shape the progression of aging and neurodegeneration remains to be clarified. We identified two mouse strains, flincher (fln) and toppler (to), with spontaneous recessive mutations that cause cerebellar ataxia and Purkinje cell degeneration. Positional cloning demonstrated that these mutations reside in the Lass1 gene. Lass1 encodes (dihydro)ceramide synthase 1 (CerS1), which is highly expressed in neurons. Both fln and to mutations caused complete loss of CerS1 catalytic activity, which resulted in a reduction in sphingolipid biosynthesis in the brain and dramatic changes in steady-state levels of sphingolipids and sphingoid bases. In addition to Purkinje cell death, deficiency of CerS1 function also induced accumulation of lipofuscin with ubiquitylated proteins in many brain regions. Our results demonstrate clearly that ceramide biosynthesis deficiency can cause neurodegeneration and suggest a novel mechanism of lipofuscin formation, a common phenomenon that occurs during normal aging and in some neurodegenerative diseases. 相似文献
6.
Naturally occurring neuronal death (NOND) is an essential phenomenon during the course of normal development of the nervous system. Studies in vivo and on organotypic cultures have helped to elucidate the basic histological and ultrastructural features, as well as the main cellular mechanisms of NOND in several areas of the brain. This review examines the existing evidence about the two waves of apoptotic cell death that affect the different types of cerebellar neurons in normal development and certain pathological conditions. The first wave regards neuronal progenitors and pre-migratory neuroblasts, the second post-migratory neuroblasts and mature neurons. The underlying cellular and molecular mechanisms are discussed critically also in the light of their relevance to neurodegenerative diseases. 相似文献
7.
8.
The role of extracellular calcium in monoamine responses of central neurons was investigated using explant cultures of tuberal hypothalamus. The spontaneous activity of neurons in cultures was recorded in balanced salt and calcium-deficient salt solutions. The firing rate was reversibly augmented during perfusion with calcium-free salt solutions. This increased firing rate was counteracted by the addition of magnesium. Addition of magnesium also regularized the pattern of firing. Iontophoretic application of putative monoamine neurotransmitters reversibly decreased the rate of firing in both normal and calcium-deficient salt solutions. These results suggest that monoamine inhibitions are not primarily mediated by transmembrane calcium fluxes. 相似文献
9.
10.
James E. Olson Walter Schimmerling G. Craig Gundy Cornelius A. Tobias 《Cell biochemistry and biophysics》1981,3(4):349-371
Electrophysiological and ultrastructural effects of focused laser radiation on neurons from neonatal rat cerebellum in tissue culture are reported. Action potentials were elicited by an extracellular current pulse train. The stimulator voltage required for half-maximum response frequency was measured as a function of the energy delivered by a single laser pulse. Above a “threshold” laser energy, the cell response to stimulation became negligible for all stimulator voltages. Electron micrographs of cells revealed that the mitochondria are preferentially damaged at an energy comparable to the electrophysiological threshold. The damaged mitochondria showed swollen matrix space and disrupted cristae membranes. Higher laser energies resulted in damage to other cytoplasmic structures. The results are consistent with a model that assumes that light interaction with the nerve cells proceeds by local heating of the mitochondria and nearby structures and leads to an increased conductance of the membrane to some ionic species. 相似文献
11.
G N Orlovski? 《Biofizika》1972,17(6):1119-1126
12.
In the present study, we have examined the transport of polyamines in cultured cerebellar granule cells. Our results suggest the existence of two different transporters for polyamines in these neurons. Putrescine and spermidine uptake (K ap m = 2.17 and 1.39 microM, respectively), were affected when extracellular sodium was replaced with choline (about 30% inhibition over controls) or sucrose (about 2.5-fold potentiation over controls). By contrast, the substitution of sodium by choline or sucrose did not modify spermine uptake (K ap m = 13.53 microM) in cerebellar granule cells. Accordingly, alteration of membrane potential with ouabain was able to block putrescine (50% inhibition) and spermidine (60% inhibition) uptake but not spermine uptake. These results indicate that putrescine and spermidine transport in cerebellar granule cells is membrane potential dependent, whereas spermine uptake is not modulated by membrane potential. 相似文献
13.
Localization of 4.1 related proteins in cerebellar neurons 总被引:1,自引:0,他引:1
Localization of 4.1 related proteins in neurons was studied with immunofluorescence microscopy and with immunoelectron microscopy on ultrathin cryosections. In rat cerebellum, 4.1 immunoreactive proteins were demonstrated in Purkinje cell bodies, dendrites and other neurons in the cerebellar cortex. Some glial cells showed staining, but no labeling was found in myelinated axons of the white matter and of the glomeruli in the granule cell layer. At the ultrastructural level, the 4.1 related proteins were localized mainly in the cytoplasmic matrix, while some labeling was found underneath the plasma membrane. To determine whether 4.1 related proteins in neuronal cytoplasm exist as part of the cytoskeleton or not, PC12 cells cultured in the presence of nerve growth factor were stained with the anti-4.1 antibody. Since cytoplasmic staining was retained after detergent treatment, the 4.1 related proteins seem to exist as a component of the neural cell cytoskeleton. Localization of 4.1 related proteins during the postnatal development of the cerebellum was also studied. In Purkinje cells, localization of 4.1 related proteins changed according to the stages of the postnatal development. The present data suggest that 4.1 related proteins in neurons localized mainly in the cytoplasm and may play some role in organizing cytoskeletal networks in the cytomatrix. Their distribution is developmentally regulated in some neurons, possibly in relationship to their maturation in the cytoskeleton. 相似文献
14.
15.
16.
17.
Cultured cerebellar granule neurons exposed to gradual reductions in osmolarity (-1.8 mOsm/min) maintained constant volume up to -50% external osmolarity (pi(o)), showing the occurrence of isovolumetric regulation (IVR). Amino acids, Cl-, and K+ contributed at different phases of IVR, with early efflux threshold for [3H]taurine, D-[3H]aspartate (as marker for glutamate) of pi(o) -2% and -19%, respectively, and more delayed thresholds of -30% for [3H]glycine and -25% and -29%, respectively, for Cl- (125I) and K+ (86Rb). Taurine seems preferentially involved in IVR, showing the lowest threshold, the highest efflux rate (five-fold over other amino acids) and the largest cell content decrease. Taurine and Cl- efflux were abolished by niflumic acid and 86Rb by 15 mM Ba2+. Niflumic acid essentially prevented IVR in all ranges of pi(o). Cl--free medium impaired IVR when pi(o) decreased to -24% and Ba2+ blocked it only at a late phase of -30% pi(o). These results indicate that in cerebellar granule neurons: (i) IVR is an active process of volume regulation accomplished by efflux of intracellular osmolytes; (ii) the volume regulation operating at small changes of pi(o) is fully accounted for by mechanisms sensitive to niflumic acid, with contributions of both Cl- and amino acids, particularly taurine; (iii) Cl- contribution to IVR is delayed with respect to other niflumic acid-sensitive osmolyte fluxes (osmolarity threshold of -25% pi(o)); and (iv), K+ fluxes do not contribute to IVR until a late phase (< -30% pi(o)). 相似文献
18.
19.
Specific subcellular targeting and spatial arrangement of signaling molecules are important for efficient signal transduction. The neuro-specific type-I adenylyl cyclase (AC1) is stimulated by Ca2+, and plays an essential role in neurodevelopment and neuroplasticity. We generated hemagglutinin (HA)-tagged AC1 to study its subcellular localization in cultured neurons. The HA-tagged AC1 has similar enzymatic activity and regulatory properties to that of non-tagged protein. HA-AC1 targeted to both apical and basolateral domains in the epithelial Madin-Darby canine kidney (MDCK) cells, and it was found in both axons and dendrites in cultured hippocampal neurons as well as in cerebellar granule neurons. Interestingly, AC1 showed a distinct punctate form of immunostaining in MDCK cells and transfected neurons, suggesting it targets to specific subcellular domains. By immunostaining with different synaptic markers, we found that AC1 puncta were located at the excitatory synapses in cerebellar granule neurons. Our data provide a possible cellular mechanism for the physiological role of AC1 in neuroplasticity. 相似文献