首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The water-soluble polysaccharide (AMP), with a molecular mass of 7.8 × 103 Da as determined by high-performance size-exclusion chromatography (HPSEC), was obtained from the fruiting body of Armillaria mellea. Methylation, Smith degradation, acetolysis, 1H and 13C NMR spectroscopy and acid hydrolysis studies were conducted to elucidate its structure. The results indicated that AMP consisted of a backbone composed of (1→6)-linked-α-d-glucopyranosyl, (1→2,6)-linked-α-d-glucopyranosyl and (1→6)-linked-α-d-galactopyranosyl residues in the ratio of 3:1:1, and terminated with one single terminal (1→)-β-d-glucopyranosyl at the O-2 position of (1→2,6)-linked-α-d-glucopyranosyl, on average, along the main chain. Preliminary tests in vitro showed that AMP has stimulating effects on murine lymphocyte proliferation induced by concanavalin A or lipopolysaccharide in a dose-dependent manner. It is a possible potential immunopotentiating agent for use in health-care food or medicine.  相似文献   

2.
6-N-[3-3H]Trimethyl-dl-lysine was synthesized from 6-N-acetyl-l-lysine by the following chemical scheme: 6-N-acetyl-l-lysine → 2-keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid → 2-[3-3H]keto-6-N-acetylcaproic acid oxime → 6-N-[3-3H]acetyl-dl-lysine → dl-[3-3H]lysine → 2-N-[3-3H]formyl-dl-lysine → 2-[3-3H]formyl-6-N-trimethyl-dl-lysine → 6-N-[3-3H]trimethyl-dl-lysine. Using a 70% ammonium sulfate fraction obtained from a high-speed rat kidney supernatant, the cosubstrate and cofactor requirements for 6-N-trimethyl-l-lysine hydroxylase activity as measured by tritium release from 6-N-[3-3H]trimethyl-dl-lysine were: α-ketoglutarate, ferrous ions, l-ascorbate, and oxygen, with added catalase showing a slight but distinct stimulatory effect. On incubation with the crude rat kidney preparation, the release of tritium from 6-N-[3-3H]trimethyl-dl-lysine was linear with both time of incubation and protein concentration. Hydroxylation of 6-N-trimethyl-l-lysine, as measured by tritium release from the labeled substrate, was examined in rat kidney, heart, liver, and skeletal muscle tissues, and found to be most active in the kidney.  相似文献   

3.
The characteristics of acidic polysaccharides extracted from Daucus carota L. var. sativa Hoffm were investigated and its hepatoprotective effects on alcoholic liver injury were determined in the mice model. A carrot polysaccharide (CPS-I: Carrot polysaccharide-I) with the molecular weight of 3.40×104 kDa was isolated from Daucus carota L. and purified by diethylaminoethyl-52 and Sephadex G-150 column chromatography. The components were analyzed by HPLC, which revealed that CPS-I consisted of galacturonic acid, rhamnose, xylose, arabinose, fructose, and galactose at a relative ratio of 1 : 3.16 : 1.13 : 5.53 : 3.45 : 7.76. Structural characterization analysis suggested that CPS-I was mainly composed of →6)-β-D-Galp-(1→ and →5)-α-L-Araf-(1→. The hepatoprotective effect of CPS-I was evaluated by alcoholic liver injury mice model. The results showed that the administration of CPS-I (300 mg/kg/day) alleviated the alcoholic liver injury in mice by increasing the levels of ADH and ALDH and reducing oxidative stress. CPS-I ameliorated the pathological changes of liver characterized by lipid accumulation, and reduced the number of lipid droplets.  相似文献   

4.
Using chemical analysis and 13C-nuclear magnetic resonance (NMR) spectroscopy, capsular polysaccharide purified from culture supernatants of a strain of Pasteurella haemolytica serotype A2 was shown to consist of a (2 → 8)-α-linked polymer of N-acetylneuraminic acid. This is identical to the capsular polysaccharides of Neisseria meningitidis group B and Escherichia coli K1, and is known as colominic acid. Polymer isolated from a second strain was contaminated with α-1,4-linked dextran. The known poor immunogenicity of these two polymers explains the failure by others to produce effective extract vaccines for this important ovine pathogen.  相似文献   

5.
A new basic amino acid, hypusine, was isolated from the homogenate of bovine brain tissue by ion-exchange column chromatography. The structure of this amino acid was determined to be N6-4-amino-2-hydroxybutyl)-2,6-diaminohexanoic acid on the basis of its physical properties involving NMR and mass spectra, as well as chemical degradation including periodate oxidation and reduction with HI and P.  相似文献   

6.
Four triterpenoid saponins (14) were isolated from the aerial parts of Trifolium argutum Sol. (sharp-tooth clover) and their structures were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry and chemical methods. Two of them are new compounds, characterized as 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]-3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (1) and 3-O-[β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]-3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (2). The occurrence of 3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (melilotigenin) in its natural form is reported for the first time as a triterpenoid aglycone within Trifolium species. The phytotoxicity of compounds was evaluated on four STS at concentration 1 μM to 333 μM. Compound 1 was the most active, showing more than 60% inhibition on the root growth of L. sativa at the higher dose, with IC50 (254.1 μM) lower than that of Logran® (492.6 μM), a commercial herbicide used as positive control. The structure–activity relationships indicated that both aglycones and glycosidic parts may influence the phytotoxicity of saponins.  相似文献   

7.
A new method for the radioisotopic assay of neuraminidase activity has been developed. The substrate utilized, α-d-N-acetylneuraminosyl-(2 → 3′)-lactit[3H]ol, was prepared by reduction of α-d-N-acetylneuraminosyl-(2 → 3′)-lactose with tritiated borohydride and purified by ion-exchange chromatography. After incubation with neuraminidase, the reaction mixtures were applied to small columns of AG 1-X2 (formate) in order to remove free sialic acid and unhydrolyzed substrate. The lactit[3H]ol released by neuraminidase action was then recovered by washing the columns with distilled water and quantitated by utilizing a liquid scintillation spectrometer. Studies with bacterial, avian, and mammalian neuraminidases are described.  相似文献   

8.
The repeating disaccharide-dipeptide units of the bacterial, cell-wall peptidoglycan, one being O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)-(1→4)-2-acetamido-2-deoxy-d-glucose, and the other, O-(2-acetamido-2-deoxy-β-d-glucosyl)-(1→4)-N-acetyl-muramoyl-l-alanyl-d-isoglutamine, have been synthesized. Some carbohydrate analogs, such as O-(N-acetyl-β-muramoyl-l-alanyl-d-isoglutamine)- (1→4)-N-acetylmuramoyl-l-alanyl-d-isoglutamine, O-β-d-glucosyl-(1→4)-N-acetylmuramoyl-l-alanyl-d-isoglutamine, and O-(6-acetamido-6-deoxy-β-d-glucosyl)-(1→4)-N-acetylmuramoyl-l-alanyl-d-isoglutamine, were also synthesized. Their immunoadjuvant activities were examined in guinea-pigs.  相似文献   

9.
Two polysaccharides were isolated from Escherichia coli O12, the major being identified as the O12-antigen and the minor as the K5-antigen. The polysaccharides were studied by sugar analysis, Smith degradation, and one- and twodimensional 1H and 13C NMR spectroscopy. As a result, the following structure of the O12-polysaccharide was elucidated, which, to our knowledge, has not been hitherto found in bacterial carbohydrates: →2)-β-D-Glcp-(1→6)-α-D-GlcpNAc(1→3)-α-L-FucpNAc-(1→3)-β-D-GlcpNAc-(1→. The →4)-β-D-GlcpA-(1→4)-α-D-GlcpNAc-(1→ structure established for the K5-polysaccharide (heparosan) is previously known. Functions of genes in the O-antigen biosynthesis gene cluster of E. coli O12 were assigned by comparison with sequences in the available databases and found to be consistent with the O12-polysaccharide structure.  相似文献   

10.
Human milk β-N-acetylglucosaminide β1 → 4-galactosytransferase (EC 2.4.1.38) was used to galactosylate ovine submaxillary asialomucin to saturation. The major [14C]galactosylated product chain was obtained as a reduced oligosaccharide by β-elimination under reducing conditions. Analysis by Bio-Gel filtration and gas-liquid chromatography indicated that this compound was a tetrasaccharide composed of galactose, N-acetylglucosamine and reduced N-acetylgalactosamine in a molar ratio of 2:0.9:0.8. Periodate oxidation studies before and after mild acid hydrolysis in addition to thin-layer chromatography revealed that the most probable structure of the tetrasaccharide is Galβ1 → 3([14C]Galβ1 → 4GlcNacβ1 → 6)GalNAcol. Thus it appears that Galβ1 → 3(GlcNAcβ1 → 6)GalNAc units occur as minor chains on the asialomucin. The potential interference of these chains in the assay of α-N-acetylgalactosaminylprotein β1 → 3-galactosyltransferase activity using ovine submaxillary asialomucin as an receptor can be counteracted by the addition of N-acetylglucosamine.  相似文献   

11.
Erythrina cristagalli agglutinin, a dimeric lectin [J. L. Iglesias, et al. (1982) Eur. J. Biochem.123, 247–252] was shown by equilibrium dialysis to be bivalent for 4-methylumbelliferyl-β-d-galactoside. Upon binding to the lectin, this ligand showed a difference absorption spectrum with two maxima (at 322 and 336 nm) of equal intensity (Δ? = 1.2 × 103m?1 cm?1). A similar spectrum with a comparable value of Δ? was obtained with 4-methylumbelliferyl-N-acetyl-β-d-galactosaminide. Binding of methyl-α-d-galactoside, lactose, and N-acetyllactosamine all produced small but equally intense protein difference spectra with a maximum (Δ? = 2.8 × 102 M?1 cm?1) at 291.6 nm. Upon binding of N-dansyl-d-galactosamine to the lectin, there was a fivefold increase in fluorescence intensity of this ligand. The association constant for N-dansyl-d-galactosamine was caused by a very favorable ΔS° of the dansyl group without affecting the strictly carbohydrate-specific character of binding. N-Dansyl-d-galactosamine was employed as a fluorescent indicator ligand in substitution titrations. This involved the use of simple carbohydrates, N-acetyllactosamine, and oligosaccharides which occur in the carbohydrate units of N-glycoproteins; the latter were Gal(β → 4)GlcNAc(β1 → 2)Man, Gal(β1 → 4)GlcNAc(β1 → 6)Man, and Gal(β1 → 4)GlcNAc(β1 → 6)[Gal(β1 → 4)GlcNAc(β1 → 2)]Man. The titrations were performed at two temperatures to determine the thermodynamic parameters. In the series N-acetyl-d-galactosamine, methyl-α-d-galactoside, and lactose, ?ΔH° increased from 24 to 41 kJ mol?1; it increased further for N-acetyllactosamine and then remained unchanged for the N-acetyllactosamine-containing oligosaccharides (55 ± 1 kJ mol?1). This indicated that the site specifically accommodated the disaccharide structure with an important contribution of the 2-acetamido group in the penultimate sugar. Beyond this, no additional contacts seemed to be formed. This conclusion also followed from considerations of ΔS° values which became more unfavorable in the above series (?23 to ?101 ± 4 J mol?1 K?1); the most negative value of ΔS° was observed with N-acetyllactosamine and the three N-acetyllactosamine-containing oligosaccharides.  相似文献   

12.
This experiment was performed to investigate the possibility that N′ -methylnicotinamide (N′-methyl-3-pyridinecarboxamide) and nicotinamide N-oxide have niacin activity or not in animals. When 20 mg N′-methylnicotinamide per mouse was administered, urinary excretion of nicotinamide, N1-methylnicotinamide (MNA), N1-methyl-2-pyridone-5-carboxamide (2-Py), and N1-methyl-4-pyridone-3-carboxamide (4-Py) increased 24-, 3-, 3-, and 3-fold, respectively, compared with the control values. The increased ratios of MNA, 2-Py, and 4-Py were almost the same as those when 20 mg nicotinamide was administered. Therefore, the relative activity of N′-methylnicotinamide to nicotinamide as niacin was considered to be about 1. When 20 mg nicotinamide N-oxide per mouse was administered, urinary excretion of nicotinamide, MNA, 2-Py, and 4-Py increased 6.4-, 1.8-, 1.6-, and 1.7-fold, respectively, compared with the control values. The increased ratios of MNA, 2-Py, and 4-Py were about 1/2 of those when 20 mg nicotinamide was administered, so the relative activity of nicotinamide N-oxide to nicotinamide as niacin is considered to be about 1/2. In conclusion, it was found the possibility that the reactions N′-methylnicotinamide → nicotinamide and nicotinamide N-oxide → nicotinamide occur, at least in mice, and that therefore N′-methylnicotinamide and nicotinamide N-oxide have niacin activity.  相似文献   

13.
Chitosan, prepared by total N-deacetylation of chitin, underwent complete and specific carboxylation at C-6 when oxidized, as the perchlorate salt 2, with chromium trioxide in acetic acid. The resultant (1→4)-2-amino-2-deoxy-β-D-glucopyranuronan, obtained as its perchlorate (3), was N-sulfated with chlorosulfonic acid in pyridine to afford a (1→4)-2-deoxy-2-sulfoamino-β-D-glucopyranuronan, isolated as its amorphous sodium salt 4; the latter displayed moderate blood-anticoagulant activity. The products 3 and 4 showed marked in vitro growth inhibition of leukemia L-1210 cells.  相似文献   

14.
ON THE STRUCTURE OF A NEW, FUCOSE CONTAINING GANGLIOSIDE FROM PIG CEREBELLUM   总被引:12,自引:7,他引:5  
A new ganglioside, provisionally named GLIVa, was isolated in pure form from pig cerebellum. Ganglioside GLIVa is a disialoganglioside containing fucose. Its basic neutral glycosphingolipid core is the gangliotetraose ceramide: Gal, β 1 → 3 GalNAc, β 1 → 4 Gal, β 1 → 4 Glc, β 1 → Cer. Fucose is α-glycosidically linked to the 2-position of external galactose and one N-acetylneuraminic acid is linked to the other one by an α, 2 → 8 linkage. Thus the total structure of ganglioside GLIVa is the following: Fuc, α 1 → 2 Gal, β 1 → 3 GalNAc, β 1 → 4 (NeuAc, α 2 48 NeuAc, α 2 → 3) Gal, β 1 → 4 Glc, β 1 → Ceramide. According to the IUPAC-IUB Commission on Biochemical Nomenclature is indicated as II3α(NeuAc)2 IV2αFuc-GgOse4Cer.  相似文献   

15.
The mass spectra of the trimethylsilyl (TMS) derivatives of the methyl and trideuteriomethyl esters of N-acetylneuraminic acid, the methyl ester of N-glycolylneuraminic acid, the methyl ester methyl β-glycoside of N-acetylneuraminic acid, the trideuteriomethyl ester trideuteriomethyl β-glycoside of N-acetylneuraminic acid, and the methyl esters of the (2→3)- and (2→6)-linked isomers of N-acetylneuraminic acid—lactose are discussed. The characteristic fragmentation patterns of the sialic acid derivatives can be used for the identification of this type of carbohydrate. The (2→3)- and (2→6)-linked isomers of N-acetylneuraminic acid—lactose can be differentiated.  相似文献   

16.
The structures of cell wall glycopolymers from the type strains of three Actinoplanes species were investigated using chemical methods, NMR spectroscopy, and mass spectrometry. Actinoplanes digitatis VKM Ac-649T contains two phosphate-containing glycopolymers: poly(diglycosyl-1-phosphate) →6)-α-D-GlcpNAc-(1-P-6)-α-D-GlcpN-(1→ and teichoic acid →1)-sn-Gro-(3-P-3)-β-[β-D-GlcpNAc-(1→2]-D-Galp-(1→. Two glycopolymers were identified in A. auranticolor VKM Ac-648T and A. cyaneus VKM Ac-1095T: minor polymer–unsubstituted 2,3-poly(glycerol phosphate), widely abundant in actinobacteria (Ac-648T), and mannan with trisaccharide repeating unit →2)-α-D-Manp-(1→2)-α-D-Manp(1→6)-α-D-Manp-(1→(Ac-1095T). In addition, both microorganisms contain a teichuronic acid of unique structure containing a pentasaccharide repeating unit with two residues of glucopyranose and three residues of diaminouronic acids in D-manno- and/or D-gluco-configuration. Each of the strains demonstrates peculiarities in the structure of teichuronic acid with respect to the ratio of diaminouronic acids and availability and location of O-methyl groups in glucopyranose residues. All investigated strains contain a unique set of glycopolymers in their cell walls with structures not described earlier for prokaryotes.  相似文献   

17.
Cell walls of three type strains of the Bacillus subtilis group, Bacillus mojavensis VKM B-2650, Bacillus amyloliquefaciens subsp. amyloliquefaciens VKM B-2582, and Bacillus sonorensis VKM B-2652, are characterized by the individual set of teichoic acids. All strains contained 1,3-poly(glycerol phosphates), unsubstituted, acylated with D-alanine, and glycosylated. The latter differ in the nature of the monosaccharide residue. Teichoic acids of B. mojavensis VKM B-2650T and B. amyloliquefaciens subsp. amyloliquefaciens VKM B-2582T contained α-glucopyranose, while those of B. sonorensis VKM B-2652T contained β-glucopyranose and N-acetyl-α-D-glucosamine. Moreover, cell walls of B. mojavensis VKM B-2650T contained a teichoic acid of poly(glycosylglycerol phosphate) nature with the following structure of the repeating unit: -4)-α-D-α-D-GlcpNAc-(1 → 3)]-Glcp-(1 → 2)-sn-Gro-(3-P-. The type strains have been characterized according to the composition of cell wall sugars and polyols. Application of teichoic acids (set and structure) as chemotaxonomic characteristics is discussed for six type strains of the Bacillus subtilis group. Polymer structures were determined by chemical and NMR spectroscopic techniques.  相似文献   

18.
Immunoassays for heavy metals offer an alternative approach to traditional techniques for detection of mercury. In this study, a mercury-chelate was prepared with 1-(4-aminobenzyl) ethylenediamine-N,N,N′,N′-tetraacetic acid (aminobenzyl-EDTA). The resulting complex was linked to keyhole limpet hemocyanin (KLH) or bovine serum albumin via the amino group and used as the immunizing antigen or detection antigen, respectively. BALB/c mice were immunized with KLH-aminobenzyl-EDTA-Hg and spleen cells from BALB/C mice were fused with Sp2/0 cells. One cell line (5F7) produced monoclonal antibodies with preferential selectivity and sensitivity for aminobenzyl-EDTA-Hg. This cell line had an affinity constant of 4.31?×?109 L/mol and its cross-reactivity (CR) with other metals was <2%. The antibody was used for competitive indirect ELISA (CI-ELISA) for Hg2+ measurements. The detection range was 0.087–790.4 μg/L and the lower limit of detection was 0.042 μg/L. The concentrations of mercury in environmental water samples obtained by CI-ELISA correlated well with graphite furnace atomic absorption spectrometry (GFAAS), and the mean recovery was 88.82% to 104.64%. These results indicate that this method could be used for monitoring mercury of water.  相似文献   

19.
B N Rao  C A Bush 《Biopolymers》1987,26(8):1227-1244
The antifreeze glycopeptide (AFGP-8) from polar cod, B. saida, is a 14-amino acid polypeptide having alternating glycotripeptide sequences of Ala-[Gal(β1 → 3)GalNAc(β1 → O)]-Thr-Pro and Ala-[Gal(β1 → 3)GalNAc(β1 → O)]-Thr-Ala, with alanyl residues at amino and carboxy terminals. Conformational studies of AFGP-8 have been carried out by 1H-nmr and empirical energy calculations to investigate the difference in its antifreeze behavior from that of the more active high-molecular weight AFGP 1-4 of P. borchgrevinki. The 1H-nmr spectra, including the resonances of the exchangeable amide protons, were assigned by two-dimensional correlated spectroscopy (COSY), one-dimensional difference decoupling, and nuclear Overhauser effect (NOE) measurements. For the four threonyl residues, the amide proton coupling constants and the small coupling constants between Hα and Hβ indicate similar conformations, despite significant chemical shift differences. The strong NOE between the α protons and the amide protons of the residue following together with large temperature coefficients of chemical shifts, indicate an extended conformation not consisting of α-helix, turns or bends. Energy computations indicate several low-energy conformations consistent with the observed coupling constants for ?. Among these, a left-handed helical conformation with three repeating residues per turn has been proposed, which is in accordance with the observed NOE between the methyl group of the α-GalNAc and Ala Hβs. While the observed Overhauser effects in the threonyl side chain suggest a certain amount of conformational averaging, the effect involving the acetmido methyl of α-GalNAc and Hβs of Ala indicate that it as is a major conformer. In view of the close similarity between the conformations of AFGP-8 and the more active antifreeze polymer, AFGP 1-4, we propose that the difference in their activities is due to the length of the regular repeating structure with glycosylation at every third amino acid residue, and not due to any fundamental difference in their conformations.  相似文献   

20.
This report describes synthesis and evaluation of cationic complexes, [99mTc(CO)3(L)]+ (L = N-methoxyethyl-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L1), N-[(15-crown-5)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L2) and N-[(18-crown-6)-2-yl]-N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]amine (L3)) as potential radiotracers for heart imaging. Preliminary results from biodistribution studies in female adult BALB-c mice indicated that the cationic 99mTc(I)-tricarbonyl complex, [99mTc(CO)3(L2)]+, has a significant localization in the heart at 60 min post-injection. To understand the coordination chemistry of these bisphosphine ligands with the 99mTc(I)-tricarbonyl core, we prepared [Re(CO)3(L4)]Br (L4: N,N-bis[(2-diphenylphosphino)ethyl]methoxyethylamine) as a model compound. [Re(CO)3(L4)]Br has been characterized by elemental analysis, IR, ESI-MS, NMR (1H, 13C, 1H-1H COSY, and 1H-13C HMQC) methods, and X-ray crystallography. In solid state, [Re(CO)3(L4)]+ has a distorted octahedron coordination geometry with PNP occupying one facial plane. The chelator backbone adopts a “chair” conformation with phosphine-P atoms at equatorial positions and the amine-N at the apical site. In solution, [Re(CO)3(L4)]+ is able to maintain its cationic nature with no dissociation of carbonyl ligands or any of the three PNP donors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号