首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integrating circuitry and efferent pathways for neural signals evoked in the photosensory pineal organ by changes in ambient illumination have been investigated by a multidisciplinary approach. Intrapineal efferent neurons were identified by means of retrograde filling with horseradish peroxidase (HRP). In addition to several types of neurons, photoreceptor cells that emitted axons to the brain via the pineal tract were observed. The presence of several populations of local interneurons (putatively cholinergic, GABAergic and substance P-containing) and possible afferent (putatively noradrenergic and peptidergic) central innervations were established by means of immunocytochemistry. The anatomical substrate for processing of neural signals thus delineated, the responses of pineal sensory and neural elements to photic stimulation were investigated by means of intracellular recording. Successful recordings were followed by intracellular injection with HRP or Lucifer Yellow CH, for subsequent light or electron microscopical investigation. The recordings indicate the presence of at least two types of photoreceptor cells, that display morphological and physiological features of both retinal rods and cones. In addition, one type of (sign-conserving) interneuron was identified. The photosensory pineal organ thus possess an integrative neural circuitry that may be involved in the elaboration of neural signals to the brain, and/or in the local control of intrapineal functions, e.g. indoleamine synthesis.  相似文献   

2.
3.
Simultaneous recordings were obtained from the primary and secondary somatosensory cortical areas (SI and SII) in cats anesthetized with ketamine or pentobarbital. A total of 40 individual neurons were studied (29 in SII and 11 in SI) before, during, and following injections of microliter quantities of lidocaine hydrochloride in the other ipsilateral cortical area. Activity in the cortex injected with the local anesthetic was monitored with single-neuron, multi-neuron, or evoked potential responses to determine the time course of inactivation within 0.5-2 mm of the injection sites. Recording sites in both cortical locations were in the representations of the distal forelimb. Responses were elicited by transcutaneous electrical stimulation across the receptive fields with needle electrodes. Short-latency responses were synchronously activated, and, in those circumstances where single neurons were isolated in both areas, no overall differences in latency were noted. Anesthetization of either cortical area never blocked access of somatosensory information to the intact area, even when the injected cortex was completely silenced in the vicinity of the injection mass. In 15 SII neurons and 7 SI neurons, changes were seen in short-latency evoked responses to stimulation of their receptive fields or in background activity following local anesthesia of the other area through several cycles of injection and recovery. In 7 of these 15 SII cells, changes were noted in the timing and/or firing rates of the short-latency responses; changes were noted in the short-latency responses of 2 of these 7 SI cells while SII was silenced. In 11 SII and 6 SI cells, “background” activity that was recorded during the interstimulus intervals either increased (most cases) or decreased during local anesthesia of the other area. The results are discussed in reference to the hypothesis that primary sensory cortical areas feed information forward to secondary areas, and these feed back modulatory controls to the primary regions.  相似文献   

4.
Activity of single neurons and mass evoked potentials (EP) were recorded from the auditory (area 41) and associative (area 39) cortices in acute experiments on rats anesthetized with urethane, nembutal, or chloralose; pure tones were used as acoustic stimuli. The EP appearing in response to a wide range of sound tones on the surface of the auditory and associative cortices were dissimilar in their latency and shape. For neurons exhibiting stable responses, the frequency-threshold curves (FTC) were plotted.Weak and variable responses of neurons were observed under slight urethane anesthesia. Nembutal anesthesia increased the responsiveness of neurons and the probability of appearing of late components in the responses. Chloralose anesthesia was characterized by extension of frequency range perceived by a neuron, while its sharpness of tuning remained unchanged. Under all types of anesthesia employed, the responses recorded from the associative cortex neurons had longer latencies than those recorded from the auditory cortex neurons. Neurons exhibiting the frequency selectivity were much less numerous in the associative cortex than in the auditory cortex. The former neurons were often characterized by intermittent FTC and they responded to a more extended frequency range. No clear tonotopic organization was found in the associative cortex.Neirofiziologiya/Neurophysiology, Vol. 25, No. 5, pp. 343–349, September–October, 1993.  相似文献   

5.
The appearance of photic evoked responses in various structures of the reticular formation (RF) and the thalamus was investigated in freely moving rats. Photic evoked potentials (PhEP) were recorded in all the nuclei tested. The PhEP are different in shape, amplitude and latency; they can be classified as a "primary type" with small amplitudes and without latency differences from the PhEP of the visual cortex (VC) and as a "secondary type" with large amplitudes and latency differences from the PhEP of the VC. The "primary type" was observed in thalamic, pontine and bulbar structures but the "secondary type" in posterior-thalamic and mesencephalic structures. Photic afterdischarges (PhNE) and photic recruitment (PhR) were recorded in most of the nuclei tested. These PhNE and PhR have a correlation in their frequency and peak-latency to the PhNE and PhR of the VC. It is discussed that a great part of visual information is transferred to the brain stem through the Corpus geniculatum laterale (CGL) and the VC.  相似文献   

6.
In acute experiments on cats under chloralose anesthesia (70 mg/kg) unit activity was recorded extra- and intracellularly in the sensomotor cortex (areas 4 and 6) during prolonged (up to 1000 msec) photic stimulation. Responses of on-off type were generated by 100% of neurons tested to photic stimuli whose duration corresponded to the recovery cycle of functional changes after a single flash, determined by the paired stimulation method. Cutaneous stimulation affected the appearance of the photic off response if it led to a spike discharge of the neuron before the off response. It is suggested that IPSPs of cortical neurons largely determine both the duration of the cycle of functional recovery after a single flash and also differences in the pattern of generation of the off response and its interaction with responses to cutaneous stimulation.A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 355–360, July–August, 1977.  相似文献   

7.
8.
Pattern evoked potentials to full- and partial-field stimulation were recorded simultaneously from scalp electrodes and from subdural electrodes located over the temporal and occipital cortex, including electrodes placed over or close to the lower lip of the calcarine fissure. High-amplitude pattern evoked potentials were recorded exclusively from electrodes localized in the vicinity of the calcarine fissure and showed a positive-negative deflection in phase with surface recordings, followed by a second negative peak phase reversed with respect to the major surface positive peak (“P100”). The findings suggest that the initial component is an expression of the afferent volley and that the second component (equivalent of the surface “P100”) is most probably generated as a dipole strictly localized to the visual cortex in close proximity of the calcarine fissure (area 17 and/or area 18).  相似文献   

9.
Pineal multiple unit electrical activity was recorded in unanaesthetized quail maintained under a short or long daily photoperiod. Both spontaneous and flash-induced multiple unit firing were recorded in intact, castrated or superior cervical ganglionectomized birds. The effects of testosterone administration were tested in each experimental group. 10 Whereas orchidectomy led to a substantial rise in pineal multi-unit activity (MUA), testosterone propionate injection resulted in a markedly decreased MUA in castrates. A smaller decrease in MUA was caused by androgen treatment in intact or ganglionectomized birds. Androgen treatment of controls and ganglionectomized quail was not so effective in reducing pineal activity as was lengthening the photoperiod from 6L-18D to 18L-6D. 20 Repetitive photic stimulations resulted in a significant suppression of pineal MUA in all intact, castrated and ganglionectomized quail, whether or not testosterone was administered.  相似文献   

10.
In this review, we describe six lines of evidence that reveal a modulatory role for serotonin (5-HT) in the regulation of the response of suprachiasmatic nucleus (SCN) neurons to retinal illumination in the Syrian hamster. Electrical stimulation of the median raphe nucleus, sufficient to elicit the release of 5-HT in the SCN, inhibits light-induced phase shifts of the hamster circadian activity rhythm. Two 5-HT receptors capable of mediating the effects of 5-HT on photic responses, the 5-HT7 receptor and the 5-HT1B receptor, are present in the hamster SCN. Light-induced phase shifts are attenuated by systemic and local administration of two 5-HT receptor agonists, 8-OH-DPAT, and TFMPP, and these agents attenuate photic phase shifts by acting on pharmacologically distinct receptors. Furthermore, both compounds also attenuate light-induced Fos expression and photic suppression of pineal melatonin content, indicating that serotonergic modulation of photic signal transduction in the SCN is not limited to the regulation of circadian phase. Finally, both 8-OH-DPAT and TFMPP inhibit RHT neurotransmission in the hypothalamic slice preparation. Further, TFMPP fails to attenuate responses to exogenous glutamate on retinorecipient SCN neurons, consistent with a presynaptic site of action for the drug. Based on these data, we propose that 5-HT modulates RHT neurotransmission in the SCN through at least two distinct mechanisms: (1) via activation of 5-HT7 receptors probably located on retinorecipient neurons; and (2) via activation of presynaptic 5-HT1B receptors leading to reduced release of glutamate from RHT terminals in the SCN.  相似文献   

11.
12.
The signal-to-noise ratio based on a plus-minus average for residual noise estimation has been systematically computed for brain-stem auditory evoked potentials (BAEPs) evoked by alternating polarity clicks from threshold up to 100 dB nHL in subjects with normal cochlear function. The plus-minus averages have exhibited a systematic dual behaviour in close correspondence with the “L” and “H” portions of the latency-intensity functions: from threshold up to 50 dB SL (“L” segment) they faithfully reflect the post-averaging residual noise. From 50 dB SL upwards the plus-minus averages are contaminated by a signal identified as the differential potential between rarefaction and condensation responses. The plus-minus average is therefore an unreliable indicator of the post-averaging residual noise when alternating polarity clicks louder than 50 dB are used. These findings suggest that for intensities corresponding to the “L” (steep) part of the latency-intensity function, when inner hair cell excitation is dependent on active amplification by the outer hair cells, no difference exists between rarefaction and condensation responses. By contrast, once levels at which the inner hair cells can be directly stimulated are reached, responses to rarefaction and condensation clicks become different.  相似文献   

13.
Isoflurane anesthesia induces a striking increase in the P22 potential recorded over the precentral scalp whereas the amplitude of the N20 is reduced. It is not known whether the increased “P22” enhanced by isoflurane arises from the same generator as the small precentral P22 potential recorded in the normal awake subject. Multi-channel recordings of SEP before and during isoflurane anesthesia were performed in 13 normal subjects. Isopotential topographic maps showed that isoflurane did not change the distribution of the precentral “P22” despite its clear amplitude increase. Our data confirm that isoflurane enhances the precentral P22 and that the enhanced “P22” arises from the same generator as the P22 recorded before isoflurane anesthesia.  相似文献   

14.
In mammals both the regulation of circadian rhythms and photoperiodic responses depend exclusively upon photic information provided by the lateral eyes; however, nonmammalian vertebrates can also rely on multiple extraocular photoreceptors to perform the same tasks. Extraocular photoreceptors include deep brain photoreceptors located in several distinct brain sites and the pineal complex, involving intracranial (pineal and parapineal) and extracranial (frontal organ and parietal eye) components. This review updates the research field of the most recent acquisitions concerning the roles of extraocular photoreceptors on circadian physiology and behavior, particularly photic entrainment and sun compass orientation.  相似文献   

15.
In mammals both the regulation of circadian rhythms and photoperiodic responses depend exclusively upon photic information provided by the lateral eyes; however, nonmammalian vertebrates can also rely on multiple extraocular photoreceptors to perform the same tasks. Extraocular photoreceptors include deep brain photoreceptors located in several distinct brain sites and the pineal complex, involving intracranial (pineal and parapineal) and extracranial (frontal organ and parietal eye) components. This review updates the research field of the most recent acquisitions concerning the roles of extraocular photoreceptors on circadian physiology and behavior, particularly photic entrainment and sun compass orientation.  相似文献   

16.
The aim of this experiment was to characterize the physiological properties of cat retinal ganglion cells that project to the suprachiasmatic nucleus (SCN). Retrogradely labeled SCN-projecting ganglion cells were recorded extracellularly in vitro. For the first time, this study provides crucial information on visual response properties of ganglion cells in the entrainment circuitry. All recorded cells gave sustained responses (n = 9). Although most of the cells (n = 8) had an "on" center receptive field, one cell showed "on-off" center receptive field properties. The range of receptive field sizes was 2 to 5 deg. For most of the cells tested, the spectral wavelength that evoked peak responses was 500 nm (3 out of 5 cells). All recorded cells (n = 9) preferred still or extremely slow-moving stimuli (3.3 deg/s). These results indicate that cat SCN-projecting cells receive inputs from conventional photoreceptors. The hypothesis that both conventional and cryptochromic photoreceptors are involved in transferring photic signals is discussed.  相似文献   

17.
In this review, we describe six lines of evidence that reveal a modulatory role for serotonin (5-HT) in the regulation of the response of suprachiasmatic nucleus (SCN) neurons to retinal illumination in the Syrian hamster. Electrical stimulation of the median raphe nucleus, sufficient to elicit the release of 5-HT in the SCN, inhibits light-induced phase shifts of the hamster circadian activity rhythm. Two 5-HT receptors capable of mediating the effects of 5-HT on photic responses, the 5-HT7 receptor and the 5-HT1B receptor, are present in the hamster SCN. Light-induced phase shifts are attenuated by systemic and local administration of two 5-HT receptor agonists, 8-OH-DPAT, and TFMPP, and these agents attenuate photic phase shifts by acting on pharmacologically distinct receptors. Furthermore, both compounds also attenuate light-induced Fos expression and photic suppression of pineal melatonin content, indicating that serotonergic modulation of photic signal transduction in the SCN is not limited to the regulation of circadian phase. Finally, both 8-OH-DPAT and TFMPP inhibit RHT neurotransmission in the hypothalamic slice preparation. Further, TFMPP fails to attenuate responses to exogenous glutamate on retinorecipient SCN neurons, consistent with a presynaptic site of action for the drug. Based on these data, we propose that 5-HT modulates RHT neurotransmission in the SCN through at least two distinct mechanisms: (1) via activation of 5-HT7 receptors probably located on retinorecipient neurons; and (2) via activation of presynaptic 5-HT1B receptors leading to reduced release of glutamate from RHT terminals in the SCN.  相似文献   

18.
Diverse circadian systems related to phylogeny and ecological adaptive strategies are proposed in teleosts. Recently, retinal photoreception was reported to be important for the circadian pacemaking activities of the Nile tilapia Oreochromis niloticus. We aimed to confirm the photic and circadian responsiveness of its close relative-the Mozambique tilapia O. mossambicus. Melatonin production in cannulated or ophthalmectomized fish and its secretion from cultured pineal glands were examined under several light regimes. Melatonin production in the cannulated tilapias was measured at 3-h intervals; it fluctuated daily, with a nocturnal increase and a diurnal decrease. Exposing the cannulated fish to several light intensities (1500-0.1 lx) and to natural light (0.1 and 0.3 lx) suppressed melatonin levels within 30 min. Static pineal gland culture under light-dark and reverse light-dark cycles revealed that melatonin synthesis increased during the dark periods. Rhythmic melatonin synthesis disappeared on pineal gland culture under constant dark and light conditions. After ophthalmectomy, plasma melatonin levels did not vary with light-dark cycles. These results suggest that (1) Mozambique tilapias possess strong photic responsiveness, (2) their pineal glands are sensitive to light but lack circadian pacemaker activity, and (3) they require lateral eyes for rhythmic melatonin secretion from the pineal gland.  相似文献   

19.
《Chronobiology international》2013,30(4-5):501-519
In mammals both the regulation of circadian rhythms and photoperiodic responses depend exclusively upon photic information provided by the lateral eyes; however, nonmammalian vertebrates can also rely on multiple extraocular photoreceptors to perform the same tasks. Extraocular photoreceptors include deep brain photoreceptors located in several distinct brain sites and the pineal complex, involving intracranial (pineal and parapineal) and extracranial (frontal organ and parietal eye) components. This review updates the research field of the most recent acquisitions concerning the roles of extraocular photoreceptors on circadian physiology and behavior, particularly photic entrainment and sun compass orientation.  相似文献   

20.
Eighteen populations of Bemisia tabaci, collected from different geographic locations (North & Central America, the Caribbean, Africa, the Middle East, Asia and Europe), were studied to identify and compare biological and genetic characteristics that can be used to differentiate biotypes. The morphology of the fourth instar/pupal stage and compound eye structures of adults were investigated using scanning electron microscopy and found to be typical of the species among all biotypes and populations studied. Setae and spines of B. tabaci larval scales from the same colony were highly variable depending on the host plant species or leaf surface characteristics. The location and the morphology of caudal setae, characteristic of all B. tabaci studied to date, were present in all colonies. However, differences in adult body lengths and in the ability to induce phy to toxic disorders in certain plant species were found between biotypes or populations. The recently identified “B” biotype, characterised by a diagnostic esterase banding pattern and by its ability to induce phytotoxic responses in squash, honeysuckle and nightshade was readily distinguished from non-“B” biotype populations. None of the non-“B” biotypes studied, were found to induce phytotoxic responses. Nine populations examined showed typical “B” biotype characteristics, regardless of country of origin. All tested populations, determined as “B” or “B”-like biotypes successfully mated with other “B” biotype colonies from different geographic areas. Non-“B” biotype colonies did not interbreed with other biotypes. The B. tabaci populations were tested for their ability to transmit 15 whitefly-transmitted geminiviruses (WTGs) from different geographic areas with a wide range of symptom types. All WTGs were transmitted by the “B” biotype colonies and by most non-“B” biotype colonies, with the exception of three viruses found in ornamental plants which were non-transmissible by any colony. Some non-“B” biotypes would not transmit certain geminiviruses and some geminiviruses were more efficiently transmitted than were others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号