首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using high resolution capillary gas chromatography, we have unequivocally separated two possible (6- and 7-)mono-O-methylated tetrahydroisoquinoline metabolites in rat brain after acute intraventricular administration of salsolinol, a cyclized dopamine/acetaldehyde derivative. 7-O-Methylsalsolinol (salsoline) constituted 94–98% of the two isomers in five brain regions examined. These results confirm the report by Bail etal. that salsolinol is largely O-methylated invivo (presumably by brain catechol-O-methyl transferase) on the hydroxyl situated “para” in the parent dopamine molecule. In comparison, dopamine itself, administered intraventricularly to pargyline-pretreated rats, was O-methylated exclusively on the “meta” hydroxyl group.  相似文献   

2.
Endogenous levels of salsolinol and dopamine were measured by a gas chromatography/mass spectrometry (GC/MS) - selected ion monitoring technique using deuterated internal standards in Long Evans rats chronically exposed to ethanol for ten months. Chronic ethanol exposure produced significant increases of dopamine and salsolinol concentrations in the medial basal hypothalamus but not striatum. The data suggest that the occurrence of salsolinol in rat brain tissue is a consequence of an in vivo Pictet-Spengler cyclization.  相似文献   

3.
Xie G  Ye JH 《PloS one》2012,7(5):e36716
Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D(1) receptors (D(1)Rs). In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D(1)Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs) and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D(1)R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D(1)Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol.  相似文献   

4.
The decarboxylation of salsolinol-1-carboxylic acid (1-methyl-6,7-dihydroxy-1,2,3,4- tetrahydroisoquinoline-1-carboxylic acid), a novel endogenous catecholic adduct of dopamine and pyruvic acid, was examined in nuclei-free homogenates of rat liver, whole brain, and kidney, as well as in buffer only. Liquid chromatographic analysis of incubations for varying times (30 min to 5 h) showed that the tetrahydroisoquinoline substrate decarboxylated oxidatively, forming one product, 1-methyl-6,7-dihydroxy-3,4-dihydroisoquinolines (1,2-dehydrosalsolinol). No salsolinol was apparent, even with added NADPH. In buffer, decarboxylation occurred by an apparent oxygen radical-mediated process: it was stimulated by cupric ion or elevated pH, and was suppressed by EDTA, superoxide dismutase, metal ion removal with Chelex-100, or low pH (less than 6). In liver or brain, the conversion was qualitatively and quantitatively similar to that in buffer; thus there was no evidence for enzyme involvement. In kidney, however, dehydrosalsolinol formation was significantly greater than that in liver, brain, or buffer, and preboiling reduced it nearly to buffer values. The heat-labile kidney activity, displaying a pH maximum ca. 9, was localized in the particulate fractions. It was blocked completely by N-ethylmaleimide. Added superoxide dismutase was only slightly inhibitory; catalase and dimethyl sulfoxide, a hydroxyl radical trap, were uneffective. Lack of inhibition by indomethacin ruled against peroxidative involvement of kidney prostaglandin synthetase. Physiological amounts of a cofactor for amino acid decarboxylases, pyridoxal-5'-phosphate, also had no effect. The oxidative decarboxylation of 1-carboxylated salsolinol by kidney fractions appears mainly due to a sulfhydryl-containing particulate factor unique to or relatively concentrated in that organ. Its identity, substrate specificity, and possible significance, particularly in alcoholism, where elevated salsolinol-1-carboxylic acid levels have been reported, remain to be ascertained.  相似文献   

5.
Endogenous 1-methyl-1, 2, 3, 4-tetrahydro-6,7-dihydroxyisoquinoline (salsolinol) could be a potential marker involved in the etiology of alcoholism. The amount of salsolinol analyzed previously from plasma and urine by different methods depends on several dietary conditions because nutrition has an important influence on salsolinol excretion. Whereas plasma salsolinol is influenced by the diet the salsolinol from peripheral mononuclear cells should be endogenously formed. Therefore, a method for the quantification of S-and R-salsolinol from lymphocytes by using gas chromatography–mass spectrometry was developed. The average amount of salsolinol in 106 cells was 1.25 ng corresponding to 2.41×10−5 M and was shown to be much higher than the plasma salsolinol concentration (2.6×10−9 M).  相似文献   

6.
Several members of the tetrahydroisoquinoline (TIQ) family of monoamine alkaloids can be formed from dopamine or its oxidized metabolites and may be involved in the pathogenesis of monoaminergic cell death in Parkinson’s disease (PD). Using enantiomeric‐selective high‐performance liquid chromatography with electrochemical detection and liquid chromatography with tandem mass spectroscopy, the regional concentrations of several TIQ derivatives, including salsolinols, were determined in mouse, rat, normal human, and PD brain. TIQ derivatives were detected in all regions subjected to analysis. In general, salsolinols were present at higher concentrations than TIQ and its benzyl and methyl derivatives, especially in human brain. Moreover, salsolinols were concentrated in areas with increased dopamine synthesis and turnover such as the ventral midbrain and striatum, respectively. A possible consequence of nigrostriatal dopaminergic cell death, significantly lower levels of (R)salsolinol, (S)salsolinol, N‐methyl‐(R)salsolinol and N‐methyl‐(S)salsolinol were found in the caudate nuclei of PD in comparison with normal human brain. Our data support the hypothesis of endogenous synthesis of salsolinols and provide evidence for their accumulation in catecholaminergic neurons.  相似文献   

7.
The endogenous dopamine-derived neurotoxin salsolinol was found to decrease survival in the dopaminergic neuronal cell line RCSN-3, derived from adult rat substantia nigra in a concentration-dependent manner (208 microM salsolinol induced a 50% survival decrease). Incubation of RCSN-3 cells with 100 micro;M dicoumarol and salsolinol significantly decreased cell survival by 2.5-fold (P < 0.001), contrasting with a negligible effect on RCHT cells, which exhibited nearly a 5-fold lower nomifensine-insensitive dopamine uptake. The levels of catalase and glutathione peroxidase mRNA were decreased when RCSN-3 cells were treated with 100 microM salsolinol alone or in the presence of 100 microM dicoumarol. In vitro oxidation of salsolinol to o-quinone catalyzed by lactoperoxidase gave the quinone methide and 1,2-dihydro-1-methyl-6,7-isoquinoline diol as final products of salsolinol oxidation as determined by NMR analysis. Evidence of the formation of salsolinol o-semiquinone radical has been provided by ESR studies during one-electron oxidation of salsolinol catalyzed by lactoperoxidase.  相似文献   

8.
Abstract: A rat brain cDNA clone has been isolated, using a eukaryotic cell transient expression system in conjunction with an anti-galactosylceramide (anti-GalCer) monoclonal antibody that induces GalCer expression in COS-7 cells. The protein was designated as GalCer expression factor-1 (GEF-1). A good correlation between GalCer expression and the level of the enzyme activity of UDP-galactose:ceramide galactosyltransferase (CGT) was demonstrated. The cDNA insert encoded a polypeptide of 771 amino acids with a calculated molecular mass of 85,787 Da. The cDNA hybridized to a single mRNA of 3.1 kb in all rat organs examined, including brain, testis, and skeletal muscle. The cDNA product was determined to be a tyrosine-phosphorylated protein with a molecular mass of 110 kDa in transfected COS-7 cells and adult rat brain. COS-7 cells transfected with the cDNA clone showed dramatic morphological changes: The transfected cells appeared to be fibroblast-like cells, whereas the parent COS-7 cells were typical epithelial-like cells. The deduced amino acid sequences revealed a strikingly high homology to a mouse hepatocyte growth factor-regulated tyrosine kinase substrate but no homology to CGT. Taking these results together, it is suggested that GEF-1 may play an important role in regulating GalCer expression in the brain.  相似文献   

9.
Abstract: Endogenous levels of salsolinol and its methylated metabolite were measured by combined gas chromatography and mass spectrometry in rats chronically exposed to ethanol for 150 days. The chronic ethanol administration produced a significant increase of salsolinol concentrations in dopamine-rich brain areas, e.g., the striatum and the limbic forebrain. A negative correlation was observed between plasma ethanol concentration and the level of salsolinol in the brain. A possible role for salsolinol in the regulation of ethanol drinking and/or in the development of ethanol dependence is discussed.  相似文献   

10.
P-Glycoprotein (PGP), a product of the multidrug resistance gene (mdr), acts as an adenosine triphosphate-dependent drug efflux system in cells. Initially, PGP was found in cancer cells, but it is now known that PGP is richly distributed in the adult brain. Passage to the central nervous system is limited by the blood-brain barrier (BBB), and mdr1 gene-deficient mice showed up-regulation of BBB permeability. In this study, we examined the expression and localization of PGP in the rat brain during development. PGP protein was predominantly detected in the membrane fraction of the adult rat brain, although it was also faintly detected in the cytosolic fraction. PGP protein in the membrane fraction was undetectable in the embryo and early stages of postnatal development by immunoblotting studies, was first detected on postnatal day (P) 7, and then gradually increased to reach a plateau. Such changes were observed commonly in the cerebral cortex, hippocampus, and cerebellum. Immunohistochemical studies showed that PGP immunoreactivity was first detected on P7, and intense PGP immunoreactivity was observed in the adult rat brain. Double-immunolabeling studies revealed that PGP was colocalized with von Willebrand factor-immunoreactive capillaries. We further examined the colocalization of PGP and astrocytes using glial fibrillary acidic protein (GFAP) as a marker. Three-dimensional analysis showed that the GFAP-immunoreactive astrocytes possessed fine processes which ensheathed capillaries, but the PGP immunoreactivity did not colocalize with the GFAP immunoreactivity. These results indicate that PGP expression increased with postnatal development and is localized in the brain capillaries.  相似文献   

11.
The influence of ethanol, its metabolites and some opiates on enkephalinase A activity was studied in rat experiments in vitro after acute and chronic administration of ethanol. It was demonstrated that addition of ethanol to the reaction mixture activated enkephalinase A of the midbrain and hypothalamus of intact rats, the maximal effect being attained at an ethanol concentration of 10(-3) M. Multiple washings with buffer of the ethanol-preincubated membranous fraction of these brain structures in the control rats did not lead to a significant reduction in the activating effect of ethanol on enkephalinase A. No activation was recorded upon the use of an enzymatic preparation of the brain from chronically alcoholized animals. Morphine, naltrexon, beta-carbolines, salsolinol (10(-4) M) and acetaldehyde (10(-8)-10(-2) M) did not activate the enzyme. It is suggested that enkephalinase A activation in rats given ethanol is determined by a direct action of ethanol on the enzyme.  相似文献   

12.
In view of neurotoxic properties of tetrahydroisoquinolines (TIQ's) there are open questions also in regard to the disturbance of the blood-brain barrier. Because endothelial cells are an important element of this barrier the present study was designed to assess the influence of salsolinol (a TIQ formed by condensation of dopamine and acetaldehyde) on cultivated endothelial cells by physiological, biochemical and morphological investigations. For the investigations we used aortic endothelial cells because of a variety of similarities in physiology and biochemistry to brain capillary endothelial cells. Cytotoxic effects estimated by cell counting after 72 h treatment with salsolinol (IC50=38 mol/l) were possibly caused by mitochondrial damages. Already after 2 h severe ultrastructural alterations of many mitochondria could be observed. The respiration activity of the cells was always inhibited after treatment with salsolinol for some hours. The damage of the mitochondria by salsolinol was not connected with inhibition of the activity of succinate dehydrogenase and cytochrome c+c1. Nevertheless the damages of mitochondrial integrity support the hypothesis that the neurotoxic effect of salsolinol is primarily caused by damaging the endothelial cells associated with a disturbance of blood-brain barrier.  相似文献   

13.
Gastrointestinal dysmotility in Parkinson's disease (PD) has been attributed in part to peripheral neurotoxine action. Our purpose was the evaluation of the salsolinol effect on intramuscular interstitial cells of Cajal (ICC), duodenal myoelectrical activity (DMA) and vagal afferent activity (VAA) in rats with experimental PD. Twenty rats were divided into 2 equal groups. Experimental PD was produced in one group by 3 weeks of the intraperitoneal salsolinol injections (50 mg/kg/day), whereas the 2-nd group served as control. DMA and VAA were recorded in both groups during fasting and stepwise--gastric distension (GD) of 10 ml. Subsequently fragments of duodenum were removed and intramuscular ICC were assessed as c-Kit antigen percentage in the duodenal muscular zone. Analyses of the fasting DMA and VAA recordings didn't reveal differences between the compared groups. During GD increase of DMA dominant frequency (p=0.04) and VAA frequency (p<0.01) was observed in the controls whereas in the salsolinol group both parameters remained unchanged. Image analysis of duodenum revealed decreased c-Kit expression in the salsolinol-injected animals (p=0.05). The results of our study may suggest the direct effect of salsolinol on both ICC and neuronal pathways of gastro-duodenal reflexes.  相似文献   

14.
Catecholamine (dopamine, norepinephrine and epinephrine) synthesizing neurons are widely distributed in the brain, sympathetic ganglia and throughout peripheral organs. Results of several recent experiments clearly suggest that many of these neurons can also contain 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), a derivate of dopamine. However, direct proof of salsolinol synthesis in those neurons is still missing. The data obtained with administration of exogenous salsolinol strongly indicate that it may play an important role in catecholaminergic regulatory processes, such as the regulation of prolactin release and/or neuronal transmission in sympathetic ganglia. Several recent data have also indicated a relationship between salsolinol or its metabolites and the etiology of Parkinson's disease or neuropathology of chronic alcoholism. These seemingly different roles of salsolinol will be discussed separately, but some common features will also be highlighted. Based on all of the discussed data the existence of a "salsolinolergic" system using salsolinol as a neuromodulator, which may be present in catecholamine synthesizing neurons, is postulated.  相似文献   

15.
Incubation of [4-(14)C]cholesteryl palmitate with the 12,000 g supernatant fraction of adult rat brain fortified with an NADPH-generating system and beta-mercaptoethylamine resulted in formation (2-5%) of more polar metabolites characterized as a mixture of cholesterol-5,6-epoxides. Under extended incubation conditions, cholestane-3beta-5alpha-6beta-triol was isolated as the major end product of the incubations. Free [4-(14)C]cholesterol incubated under similar conditions was not oxidized, whereas oxidation of [4-(14)C]cholesteryl palmitate appeared to be dependent upon hydrolysis of the ester by the rat brain microsomal subcellular fraction. Elimination of the NADPH-generating system or the addition of EDTA to the incubation mixture inhibited epoxide formation, suggesting that the products are derived from an NADPH-dependent enzymatic lipoperoxidation mechanism. The in vitro conversion of [4-(14)C]cholesterol-5alpha,6alpha-epoxide to cholestane-3beta,5alpha,6beta-triol was also demonstrated in rat brain subcellular fractions in the absence of added cofactors.  相似文献   

16.
Salsolinol is one of the dopamine-derived tetrahydroisoquinolines and is synthesized from pyruvate or acetaldehyde and dopamine. As it cannot cross the blood-brain barrier, salsolinol as the R enantiomer in the brain is considered to be synthesized in situ in dopaminergic neurons. Effects of R and S enantiomers of salsolinol on kinetic properties of tyrosine hydroxylase [tyrosine, tetrahydrobiopterin:oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2], the rate-limiting enzyme of catecholamine biosynthesis, were examined. The naturally occurring cofactor of tyrosine hydroxylase, L-erythro-5,6,7,8-tetrahydrobiopterin, was found to induce allostery to the enzyme polymers and to change the affinity to the biopterin itself. Using L-erythro-5,6,7,8-tetrahydrobiopterin, tyrosine hydroxylase recognized the stereochemical structures of the salsolinols differently. The asymmetric center of salsolinol at C-1 played an important role in changing the affinity to L-tyrosine. The allostery of tyrosine hydroxylase toward biopterin cofactors disappeared, and at low concentrations of biopterin such as in brain tissue, the affinity to the cofactor changed markedly. A new type of inhibition of tyrosine hydroxylase, by depleting the allosteric effect of the endogenous biopterin, was found. It is suggested that under physiological conditions, such a conformational change may alter the regulation of DOPA biosynthesis in the brain.  相似文献   

17.
The regional distribution of various forms of tachykinin-like immunoreactivity (TKLI) was studied in rat brain using radioimmunoassay. TKLI was measured with two different tachykinin-antisera (K12 and E7), which react with neurokinin A (NKA) and neurokinin B (NKB) but not with substance P (SP) and with a specific SP-antiserum. TKLI-K12 and TKLI-E7 were found to have similar regional distributions which were, however, significantly different from that of the substance P-like immunoreactivity (SPLI). Thus, the ratio of the tissue concentrations of TKLI-K12 or TKLI-E7 to that of SPLI was higher in frontal cortex and hippocampus and lower in pons/medulla oblongata than in the other regions studied. Cation-exchange chromatography of neutral water extracts of brain tissue revealed two major immunoreactive components of TKLI-K12 and TKLI-E7, one of which co-eluted with synthetic NKB while the other appeared in the same region as synthetic NKA. The relative quantities of these components varied depending on the brain region studied. No TKLI-K12 or TKLI-E7 co-eluted with synthetic SP. Almost all of the SPLI in acetic acid or water extracts of brain tissue eluted as a single chromatographic component in the same position as synthetic SP. Potassium-stimulated in vivo release of TKLI-K12, TKLI-E7 and SPLI in striatum of rat brain could be demonstrated using intracerebral dialysis. The present results imply that tachykinins, which may serve as neurotransmitters or neuromodulators, are present in different proportions in different regions of rat brain.  相似文献   

18.
Abstract: γ-Preprotachykinin mRNA is the most abundant tachykinin mRNA in rat tissues, but the pathway of posttranslational processing of its translation product is unknown. An antiserum was raised against the synthetic peptide Asp-Ala-Gly-His-Gly-Gln-lle-Ser-His [neuropeptide γ-(1-9)-peptide, equivalent to γ-preprotachykinin-(72-80)-peptide], that showed <1% reactivity with intact neuropeptide γ and other tachykinins. Neuropeptide γ-(1-9)-peptide was detected by radioimmunoassay in relatively high concentrations in extracts of regions of rat brain and gastrointestinal tract. These concentrations correlated with (r = 0.99), but were significantly (p < 0.05) less than, the concentrations of neurokinin A-like immunoreactivity. The neuropeptide γ-(1-9)-like immunoreactivity in an extract of rat brain was eluted from a reverse-phase HPLC column in a single fraction with the same retention time as synthetic neuropeptide γ-(1 -9)-peptide. The synthetic peptide did not contract or relax isolated rat trachea, superior mesenteric artery, stomach fundus, or ileum, and the peptide did not affect the ability of neuropeptide 7 to contract the rat fundus. It is concluded that, in rat tissues, Lys70-Arg71 in 7-preprotachykinin is a major site of posttranslational processing, but the resulting product, neuropeptide γ-(1-9)-peptide, is neither an agonist nor an antagonist at the neurokinin-2 (NK-2) receptor.  相似文献   

19.
Possible effects of various tetrahydroisoquinolines (TIQs) on rat testicular endocrine function were tested in vitro in order to prove whether these compounds, some of which have been claimed to accumulate in alcoholics, may be mediators of the development of Leydig cell insufficiency, a well-known side-effect of ethanol ingestion. TIQ effects on different levels of regulation of testis function were compared in vitro with estrogen effects, since both classes of compounds have structural similarities. Gonadotropin-stimulated testosterone production by testicular Leydig cells was inhibited by tetrahydropapaveroline and isosalsoline, the IC50 values (30 microM) being comparable to those of estradiol (3 microM), 2-hydroxyestradiol (10 microM), and the phytoestrogens, coumestrol (15 microM) and genistein (7 microM); salsolinol (85 microM) and salsoline (240 microM) were less effective, and salsolidine was ineffective. None of these TIQs interacted significantly with testicular estrogen receptor as analyzed by estradiol displacement. However, tetrahydropapaveroline, isosalsoline and salsolinol competitively inhibited (Ki 130-150 microM) substrate binding to cytochrome P450XVII, one key enzyme of androgen biosynthesis, with similar efficiency as the estrogens did (Ki 50-110 microM); salsoline and salsolidine were again much less effective. Since the efficient TIQ concentrations in this system are identical with those reported to generate central-nervous effects, it is concluded that certain TIQs may amplify peripheral inhibitory effects of ethanol on testicular endocrine function by their interaction with at least one enzyme of the androgen biosynthetic pathway.  相似文献   

20.
Brain concentrations of salsolinol (SAL), a simple tetrahydroisoquinoline (sTIQ) condensation product of dopamine (DA) and acetaldehyde, are reported to increase in chow-fed rats drinking ethanol/H2O ad libitum. However, our analyses showed that rat chow contains traces of SAL and, as previously reported, appreciable 3,4-dihydroxyphenylalanine (DOPA), a sTIQ precursor. To examine the effect of consumption of ethanol in a DOPA- and SAL-free diet on endogenous sTIQs, we analyzed two brain regions and blood plasma of rats undergoing prolonged intake (3 weeks and 23 weeks) of liquid diet containing 6.6% ethanol or isocaloric carbohydrate. SAL and three other DA-related sTIQs were quantitated using capillary gas chromatography/mass spectrometry in the selected ion mode with deuterated standards. In accord with studies on ethanol/chow-fed rats, sTIQ concentrations in hypothalamus were elevated after 3 weeks of ethanol, although after 23 weeks, hypothalamic sTIQs were either unchanged or reduced (O-methylated SAL). Furthermore, sTIQ concentrations in corpus striatum and, with one exception, plasma were not altered by ethanol ingestion for either duration. (However, 23 weeks of ethanol intake significantly reduced the striatal concentrations of DA and its acid metabolite, presumably reflecting neurotoxicity.) Reasoning that DOPA in diet might underlie the reported ethanol-dependent increases in striatal sTIQs, we found that L-DOPA supplementation (500 micrograms/rat/day) of EtOH/liquid diet-fed rats for 13 weeks tended to increase striatal SAL. Overall, the data indicate that elevations in endogenous sTIQ concentrations due to prolonged ethanol intake depend on the brain region, duration of intake, and even associated dietary constituents. In that regard, the higher striatal SAL concentrations in rats drinking ethanol ad libitum could have been facilitated by DOPA and perhaps SAL consumed in lab chow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号