首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Parkinson's disease the progressive loss of nigrostriatal dopamine neurons leads to striatal dopamine deficiency and correlates with the severity of parkinsonian disability. The findings concerning dopamine receptors both in vitro and in vivo are not consistent, possibly reflecting differences in patient populations, but the presynaptic defect in dopaminergic neurotransmission is greater than that seen in postsynaptic receptor binding studies. The cholinergic neurons in the extrapyramidal nuclei are relatively well preserved, but subcortico-cortical and -hippocampal cholinergic neurons degenerate in relation to the degree of dementia. The decreased GABA receptor binding in the parkinsonian substantia nigra possibly reflects the loss of nigral dopamine neurons, since nigral GABA receptors are located on these neurons. Of the various neuropeptides, the concentration of met- and leu-enkephalin seems to be reduced in the striatum. In the substantia nigra the concentration of substance P decreases, together with the met-enkephalin and cholecystokinin levels. The concentration of somatostatin decreases in the frontal cortex and hippocampus of demented patients. With the exception of the association between cortical somatostatin deficiency and intellectual deterioration, the role of the neuropeptides in the pathophysiology and clinical features of Parkinson's disease are not yet fully understood.  相似文献   

2.
The effects of acute and chronic administration of diisopropylfluorophosphate (DFP) to rats on acetylcholinesterase (AChE) activity (in striatum, medulla, diencephalon, cortex, and medulla) and muscarinic, dopamine (DA), and gamma-aminobutyric acid (GABA) receptor characteristics (in striatum) were investigated. After a single injection of (acute exposure to) DFP, striatal region was found to have the highest degree of AChE inhibition. After daily DFP injections (chronic treatment), all brain regions had the same degree of AChE inhibition, which remained at a steady level despite the regression of the DFP-induced cholinergic overactivity. Acute administration of DFP increased the number of DA and GABA receptors without affecting the muscarinic receptor characteristics. Whereas chronic administration of DFP for either 4 or 14 days reduced the number of muscarinic sites without affecting their affinity, the DFP treatment caused increase in the number of DA and GABA receptors only after 14 days of treatment; however, the increase was considerably lower than that observed after the acute treatment. The in vitro addition of DFP to striatal membranes did not affect DA, GABA, or muscarinic receptors. The results indicate an involvement of GABAergic and dopaminergic systems in the actions of DFP. It is suggested that the GABAergic and dopaminergic involvement may be a part of a compensatory inhibitory process to counteract the excessive cholinergic activity produced by DFP.  相似文献   

3.
In an attempt to quantify the interactions between dopaminergic and cholinergic processes, the consequences of complete or partial activation (with N-n-propylnorapomorphine) or blockade (with spiperone) of dopamine receptors for the acetylcholine levels in the rat striatum were studied. The number of specific striatal binding sites (receptors) of spiperone was nearly three times that of N-n-propylnorapomorphine (76 and 26 pmol g-1 wet weight, respectively). The agonist produced a significant increase in the striatal levels of acetylcholine, but there was no simple relationship between receptor binding and these levels. A linear negative correlation was found between the striatal levels of acetylcholine and specific spiperone binding, showing that further receptor blockade induces a decrease in acetylcholine levels, which is independent of the receptors already occupied by the antagonist. The results of this study are evidence that one striatal dopamine receptor regulates the metabolism of at least 400 molecules of acetylcholine.  相似文献   

4.
GABAergic drugs and lordosis behavior in the female rat   总被引:1,自引:0,他引:1  
Agents modifying GABAergic neurotransmission were administered to ovariectomized rats treated with different doses of estradiol benzoate (EB) + progesterone (P) or with EB alone. Hormone treatments were designed to induce an intermediate level of receptivity in order to be able to observe both stimulatory and inhibitory effects on lordosis behavior. Both the GABAA receptor agonist THIP and the GABAB receptor agonist baclofen inhibited lordosis behavior at doses from 20 and 5 mg/kg, respectively. The GABA transaminase inhibitor gamma-acetylen GABA (GAG) and the GABA agonist 3-aminopropanesulfonic acid had no effects, even when high doses were administered. The GABAA receptor antagonist bicuculline had no effect by itself nor did it block the effects of THIP. It is therefore suggested that the GABAA receptor is of slight importance in the control of lordosis behavior. No evidence could be found supporting the hypothesis that an interaction between P and GABA is important for hormone-induced receptivity. It does not appear likely that motor disturbances are responsible for the inhibitory effects of baclofen and THIP. The exact mechanism by which these drugs inhibit lordosis behavior is not clear at present.  相似文献   

5.
J C Miller  A J Friedhoff 《Life sciences》1979,25(14):1249-1255
The effect of dopamine on the K+-depolarized overflow of 3H-acetylcholine from rat striatal slices was investigated to determine whether drug-induced changes in neuronal sensitivity to dopamine might be manifested in changes in striatal cholinergic activity. Dopamine was found to produce a dose-dependent inhibition of the K+-evoked release of 3H-Ach. This inhibition could be blocked by prior exposure of the slices to haloperidol, a dopamine receptor blocker. Dopamine receptors localized on striatal cholinergic axon terminals and possibly postsynaptic dopamine receptors on cholinergic perikarya and dendrites may mediate the DA inhibition of 3H-Ach release induced by high K+. Chronic pretreatment with haloperidol followed by alpha-methyl-p-tyrosine resulted in a significant shift to the left in the dose-dependent inhibition of K+-stimulated overflow of 3H-Ach by dopamine. This shift to the left in the dose-response curve may be the result of an increase in the number of striatal dopamine receptors produced by chronic dopamine receptor blockade and inhibition of dopamine synthesis.  相似文献   

6.
The relative muscarinic anticholinergic actions of phenothiazines and related drugs are thought to regulate the propensity of these agents to elicit extrapyramidal side effects, especially those resembling the symptoms of Parkinson's disease. Pimozide, which closely resembles the butyrophenones in its chemical structure and its potent and selective dopamine receptor blockade, differs from the butyrophenones in its relatively low incidence of extrapyramidal side effects. In assays of the binding of 3H-quinuclidinyl benzilate (QNB) to muscarinic sites, pimozide displays a high affinity for these cholinergic receptors, similar to drugs, such as thioridizine and clozapine, which also have a low incidence of extrapyramidal side effects. This observation supports the notion that muscarinic anticholinergic actions can ameliorate the propensity of a drug to elicit extrapyramidal effects. The structure-activity relationships of chlorpromazine metabolites in binding to muscarinic sites in the brain parallels some of their structure-activity relationships as neuroleptic agents. 7-Hydroxychlorpromazine, which has been proposed as an antischizophrenic drug, binds to the muscarinic receptor with a potency similar to that of chlorpromazine itself, suggesting that the incidence of extrapyramidal side effects of 7-hydroxychlorpromazine might be similar to those of chlorpromazine.  相似文献   

7.
GABA agonists     
Summary This review describes the development of GABA receptor agonists with no detectable affinity for other recognition sites in GABA-mediated synapses. The key compounds are THIP, isoguvacine, and piperidine-4-sulphonic acid (P4S), developed via extensive structural modifications of the potent but not strictly specific GABA agonist muscimol. The structural parameters, which have to be considered in the design of GABA agonists are discussed on the basis of the structures and biological activities of these GABA agonists and a number of related compounds.A model, which summarizes our present knowledge of the structure of the postsynaptic GABA receptor complex, is presented, and the interaction of GABA agonists with various sites in this complex is discussed. Of particular interest are the effects of GABA agonists on the binding of diazepam to the benzodiazepine binding site, assumed to be a structural unit of the GABA receptor complex. While rigid molecules like THIP are capable of activating the GABA receptors, a certain degree of conformational mobility of GABA agonists apparently is a prerequisite for stimulation of diazepam binding in vitro at 0 °C. These findings suggest that GABA receptor functions involve conformational changes of certain elements of the receptor complex.Some aspects of the pharmacology of GABA agonists are discussed, including the attempts to develop GABA agonists with desirable pharmacokinetic and toxicological characteristics. While muscimol is a toxic compound, THIP is well tolerated by animals, and in contrast to isoguvacine, THIP penetrates into the brain after systemic administration to animals, a difference which can be explained on the basis of their protolytic properties. The attempts to develop pro-drugs of isoguvacine capable of penetrating the blood-brain barrier with subsequent decomposition in the brain tissue to isoguvacine are described.  相似文献   

8.
Abstract: Chronic, but not acute, consumption of lithium leads to a significant decrease in serotonin and GABA receptor binding in selected regions of the rat brain, with no changes noted in P-adrenergic or cholinergic muscarinic receptor binding. In addition, the concentration of β-methoxytyramine, a dopamine metabolite, in the corpus striatum was increased in the animals treated chronically with lithium, suggesting a possible enhancement in dopamine release, or inhibition of uptake, in this brain area. In contrast, chronic consumption of rubidium had no effect on any of the parameters studied. The results suggest that lithium administration causes selective changes in brain neurotransmitter receptor systems and that the net result of these changes may be a decrease in GABAergic and serotoninergic activity. The fact that these alterktions are noted only after chronic administration suggests that they may be related to the therapeutic action of lithium in the prophylactic treatment of recurrent manic- depressive psychosis.  相似文献   

9.
Various levels of organisation in the central nervous system can be distinguished, ranging from the molecular, the cellular, the multicellular and the neuronal system level. The relationship between receptor function and behaviour is focussed to the dopamine D2 type receptor of the striatal complex in relation to extrapyramidal and limbic systems. In the striatal complex a striosomal and a matrix compartment can be distinguished. The matrix compartment can be considered as a part of the extrapyramidal system and is innervated by the motor cortex and by the dopaminergic neurons of the ventral tegmental, the dorsal substantia nigra and the retrorubral area. This compartment has a relatively high density of D2 receptors. The striosomes are innervated by e.g. the prelimbic cortex and dopamine neurones of the ventral part of the substantia nigra; here the density of D2 receptors are lower. Under normal conditions most of the D2 receptors are occupied by endogenous dopamine, and postsynaptic (e.g. cholinergic) function is therefore sensitive to antagonists; e.g. antipsychotics. Exposure to drugs such as amphetamine produces a substantial overflow of dopamine from nerve terminals leading to the activation of remote dopamine receptors, that may belong to the system that normally is not influenced by these nerve terminals (defined here as extra synaptic receptor activation). A loss of the normal spatial-temporal relationships may also occur during L-DOPA therapy in Parkinson's disease. In this illness, due to degeneration of dopaminergic innervation, several dopamine receptors have become non-synaptic. In these states of intoxication the normal spatial/temporal organization is lost and such a loss may contribute to behavioural impairments.  相似文献   

10.
H Ikegami  S A Spahn  C Prasad 《Peptides》1989,10(3):681-685
Many biologic effects of TRH seem to be mediated via a dopaminergic mechanism. The present study examined the effects of chronic TRH administration on the properties of nigrostriatal dopaminergic neurons. Ten days, continuous subcutaneous TRH administration via an osmotic minipump led to a significant rise in striatal level of 3,4-dihydroxyphenylacetic acid, but not of homovanillic acid or dopamine. These treatments also did not elicit any significant changes in the maximal binding capacity (Bmax) or affinity (KD) of either D1- or D2-dopamine receptor. By contrast, TRH administration led to a significant increase in both Bmax and KD of striatal mazindol binding. This effect of TRH, however, was not observed in in vitro studies. In conclusion, these data suggest that in vivo administration of TRH may modulate dopaminergic activities by altering, directly or indirectly, dopamine release and reuptake.  相似文献   

11.
One month (but not 1–3 days) after intermittent morphine administration, the hyperresponsiveness of rats toward the locomotor effects of morphine and amphetamine was associated with an increase in dopamine (DA) D-1 receptor-stimulated adenylyl cyclase activity and enhanced steady state levels of preprodynorphin gene expression in slices of the caudate/putamen and nucleus accumbens. Such an enduring increase in postsynaptic D-1 receptor efficacy also occurred in cultured γ-aminobutyric acid (GABA) neurons of the striatum obtained from rats prenatally treated with morphine. Interestingly, in vitro glucocorticoid receptor activation in these cultured striatal neurons by corticosterone potentiated this neuroadaptive effect of prior in vivo morphine exposure. Since activation of glucocorticoid receptors by corticosterone did not affect D-1 receptor functioning in cultured neurons of saline-pretreated rats, prior intermittent exposure to morphine (somehow) appears to induce a long-lasting state of corticosterone hyperresponsiveness in striatal neurons. Therefore, DA-sensitive striatal GABA neurons may represent common neuronal substrates acted upon by morphine and corticosterone. We hypothesize that the delayed occurrence of these long-lasting morphine-induced neuroadaptive effects in GABA/dynorphin neurons of the striatum is involved in the enduring nature of behavioral sensitization to drugs of abuse and cross-sensitization to stressors. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

12.
The effect of various chronic dopaminergic treatments in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys on the brain gamma-aminobutyric acid type A (GABA(A)) /benzodiazepine receptor complex and GABA content was investigated in order to assess the GABAergic involvement in dopaminomimetic-induced dyskinesia. Three MPTP monkeys received for one month pulsatile administrations of the D1 dopamine (DA) receptor agonist SKF 82958 whereas three others received the same dose of SKF 82958 by continuous infusion. A long acting D2 DA receptor agonist, cabergoline, was given to another three animals. Untreated MPTP as well as naive control animals were also included. Pulsatile SKF 82958 relieved parkinsonian symptoms but was also associated with dyskinesia in two of the three animals whereas animals treated continuously with SKF 82958 remained as untreated MPTP monkeys. Chronic cabergoline administration improved motor response with no persistent dyskinesia. MPTP treatment induced a decrease of 3H-flunitrazepam binding in the medial anterior part of caudate-putamen and an increase in the internal segment of globus pallidus (GPi) which was in general unchanged by pulsatile or continuous SKF 82958 administration. Throughout the striatum, binding of 3H-flunitrazepam remained reduced in MPTP monkeys treated with cabergoline but was not significantly lower than untreated MPTP monkeys. Moreover, cabergoline treatment reversed the MPTP-induced increase in 3H-flunitrazepam binding in the GPi. GABA concentrations remained unchanged in the striatum, external segment of globus pallidus and GPi following MPTP denervation. Pulsatile but not continuous SKF 82958 administration decreased putamen GABA content whereas cabergoline treatment decreased caudate GABA. No alteration in GABA levels were observed in the GPe and GPi following the experimental treatments. These results suggest that: (1) D2-like receptor stimulation with cabergoline modulates GABA(A) receptor density in striatal subregions anatomically related to associative cortical afferent and (2) the absence of dyskinesia in dopaminomimetic-treated monkeys might be associated with the reversal of the MPTP-induced upregulation of the GABA(A)/benzodiazepine receptor complex in the Gpi.  相似文献   

13.
Yokoi F  Dang MT  Li J  Standaert DG  Li Y 《PloS one》2011,6(9):e24539
DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit.  相似文献   

14.
Summary We studiedin vivo the effects of locally infused taurine (50, 150, and 450 mM) on the striatal dopamine and its metabolites in comparison with those of GABA and homotaurine, a GABAA receptor agonist, in freely moving rats. The extracellular dopamine concentration was elevated maximally 2.5-, 2- and 4-fold by taurine, GABA and homotaurine, respectively. At 150 mM concentration, at which the maximum effects occurred, homotaurine increased the extracellular dopamine more than taurine or GABA. When taurine and GABA were infused simultaneously with tetrodotoxin the output of dopamine did not differ from that in the presence of tetrodotoxin alone. In comparison, tetrodotoxin did not inhibit the increase in extracellular dopamine caused by homotaurine. Furthermore, omission of calcium from the perfusion fluid inhibited the increase of extracellular dopamine caused by GABA. However, it did not block the increase of dopamine caused by taurine or homotaurine. The present study suggests that the effects of intrastriatal taurine, GABA and homotaurine on the striatal extracellular dopamine differ. Thus, these amino acids seem to affect the striatal dopaminergic neurons via more than one mechanism.  相似文献   

15.
Abstract— The presynaptic regulation of stimulated dopa-mine release from superfused rat striatal synaptosomes by opioids and γ-aminobutyric acid (GABA) was studied. It was found that in addition to dopamine D2 autoreceptors, calcium-dependent K+-stimulated [3H]dopamine release was inhibited through activation of a homogeneous population of k -opioid receptors in view of the potent inhibitory effect of the k -selective agonist U69.593 (EC50 0.2 nM) and its antagonism by norbinaltorphimine. Neither μ-nor δ-selective receptor agonists affected release of [3H]-dopamine. In addition, GABA potently inhibited the evoked [3H]dopamine release (EC50 0.4 nM) through activation of GABAA receptors in view of the GABA-mimicking effect of muscimol, the sensitivity of its inhibitory effect to picro-toxin and bicuculline, and the absence of an effect of the GABAB receptor agonist baclofen. In the presence of a maximally effective concentration of GABA, U69,593 did not induce an additional release-inhibitory effect, indicating that these receptors and the presynaptic D2 receptor are colocalized on the striatal dopaminergic nerve terminals. The excitatory amino acid agonists N-methyl-d -aspartate and kainate, as well as the cholinergic agonist carbachol, stimulated [3H]dopamine release, which was subject to k -opioid receptor-mediated inhibition. In conclusion, striatal dopamine release is under regulatory control of multiple excitatory and inhibitory neurotransmitter by activation of colocalized presynaptic receptors for excitatory amino acids, acetylcholine, dopamine, dynorphins, and GABA within the dopaminergic nerve terminals. Together, these receptors locally control ongoing dopamine neurotransmission.  相似文献   

16.
Neurotransmitter receptor alterations in Parkinson's disease.   总被引:17,自引:0,他引:17  
Neurotransmitter receptor binding for GABA, serotonin, cholinergic muscarinic and dopamine receptors and choline acetyltransferase (ChAc) activity were measured in the frontal cortex, caudate nucleus, putamen and globus pallidus from postmortem brains of 10 Parkinsonian patients and 10 controls. No changes in any of these systems were observed in the frontal cortex. In the caudaye nucleus, only the apparent dopamine receptor binding was altered with a significant 30% decrease in the Parkinsonian brain. Both cholinergic muscarinic and serotonin receptor binding were significantly altered in the putamen, the former increasing and the latter decreasing with respect to controls. In addition, ChAc activity was decreased in the putamen. In the globus pallidus, only ChAc activity was significantly changed, decreasing about 60%, with no change in neurotransmitter receptor binding. The results suggest that a progressive loss of dopaminergic receptors in the caudate nucleus may contribute to the decreased response of Parkinsonian patients to L-dopa and dopamine agonist therapy.  相似文献   

17.
Bromocriptine, at the optimal dose and time of 4 mg/kg, 90 min, increased the content of acetylcholine in the rat striatum by about 30% without affecting the acetylcholine content in other brain regions. Striatal choline acetyltransferase and acetylcholinesterase activities and sodium-dependent high affinity choline uptake were not affected by the in vivo administration or the in vitro incubation with even high amounts of the drug. The increase in striatal acetylcholine by bromocriptine was mediated through the dopaminergic system since pretreatment with pimozide or penfluridol, powerful dopamine receptor antagonists, completely prevented the effect while parachlorophenylaline and phenoxybenzene pretreatment were ineffective. The action of bromocriptine, differently from that of apomorphine, was also blocked upon inhibition of tyrosine hydroxylase by alphamethylparatyrosine, suggesting that intact catecholamine synthesis is necessary for the drug to act. The requirement of dopamine by bromocriptine was further indicated when no potentiation of the cholinergic response to bromocriptine occurred following induction of dopamine receptor supersensitivity by long-term 6-hydroxydopamine lesion of the nigroneostriatal pathway. On the other hand, evidence is presented to show that bromocriptine acts in synergism with dopamine as the latency period for the onset of bromocriptine's cholinergic action was significantly decreased when it was administered in combination with a subthreshold dose of L-dopa, the dopamine precursor. There also was no summation of bromocriptine's increase with apomorphine's increase in striatal acetylcholine content at supramaximal doses possibly indicating that the same population of intrastriatal cholinergic neurons is the common target of both drugs.It is proposed that bromocriptine exerts an inhibitory effect on the striatal cholinergic neurons through a stimulation of the dopaminergic system but, differently from apomorphine, it requires the presence of endogenous dopamine for its action.  相似文献   

18.
Fyn-mediated tyrosine phosphorylation of N-methyl-D-aspartate (NMDA) receptor subunits has been implicated in various brain functions, including ethanol tolerance, learning, and seizure susceptibility. In this study, we explored the role of Fyn in haloperidol-induced catalepsy, an animal model of the extrapyramidal side effects of antipsychotics. Haloperidol induced catalepsy and muscle rigidity in the control mice, but these responses were significantly reduced in Fyn-deficient mice. Expression of the striatal dopamine D(2) receptor, the main site of haloperidol action, did not differ between the two genotypes. Fyn activation and enhanced tyrosine phosphorylation of the NMDA receptor NR2B subunit, as measured by Western blotting, were induced after haloperidol injection of the control mice, but both responses were significantly reduced in Fyn-deficient mice. Dopamine D(2) receptor blockade was shown to increase both NR2B phosphorylation and the NMDA-induced calcium responses in control cultured striatal neurons but not in Fyn-deficient neurons. Based on these findings, we proposed a new molecular mechanism underlying haloperidol-induced catalepsy, in which the dopamine D(2) receptor antagonist induces striatal Fyn activation and the subsequent tyrosine phosphorylation of NR2B alters striatal neuronal activity, thereby inducing the behavioral changes that are manifested as a cataleptic response.  相似文献   

19.
Rats treated continually and chronically with trifluoperazine (ca 3 mg/kg/day) for six months initially developed mild catalepsy and an inhibition of spontaneous locomotor activity; both effects disappeared by three months. An initial increase in dopamine turnover (as measured by levels of homovanillic acid and dihydroxyphenylacetic acid) also disappeared by three months. Apomorphine-induced stereotypy was completely inhibited in drug-treated animals at two weeks, but progressively returned to normal after three months of drug intake. An exaggerated response to apomorphine developed in animals after six months of drug administration. Inhibition of striatal dopamine-stimulated adenylate cyclase found during the first month of drug intake was reversed at three months, a trend exaggerated after continuous drug administration for six months. Specific striatal 3H-spiperone binding affinity decreased acutely, but was increased after six months drug intake; no change in number of receptor sites occurred.These changes suggest that at least striatal dopamine receptors may become “supersensitive” during chronic neuroleptic treatment.  相似文献   

20.
Because the dopamine D3 receptor is primarily expressed in regions of the limbic system of brain, it was proposed that it may represent a target for antipsychotic drugs that is free of extrapyramidal side effects. An ex vivo receptor binding technique employing [3H]7-OH-DPAT was used to evaluate in vivo occupancy of dopamine D3 receptors in the rat nucleus accumbens by selective D3 agonist 7-OH-DPAT (7-hydroxy-dipropylaminotetralin) and various antipsychotic drugs. With an ID50 value of 0.07 mg/kg, the selective D3 agonist (+)-7-OH-DPAT had the most potent inhibitory effect on ex vivo binding of [3H]7-OH-DPAT among all drugs tested. Clinical doses of phenothiazine drugs, such as chlorpromazine and levomepromazine, induce binding to D3 receptors in vivo, while atypical antipsychotic drugs, such as clozapine, pimozide, and sulpiride, are very weak in inhibiting ex vivo binding of [3H]7-OH-DPAT, indicating that the role of D3 receptors as targets of antipsychotic drugs free of extrapyramidal side effects may not be important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号