首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The association between nuclear distribution and mobility of the human glucocorticoid receptor was examined in living COS-1 cells using yellow fluorescent protein- and cyan fluorescent protein-tagged receptors. Quantitation of the nuclear distribution induced by an array of glucocorticoid ligands revealed a continuum from a random (cortisone) to a nonrandom (triamcinolone acetonide) receptor distribution. Structure-function analysis revealed that the 9-fluoro and 17-hydroxy groups on the steroid significantly impact nuclear receptor distribution. Using time-lapse microscopy, the triamcinolone acetonide-induced receptor distribution did not change significantly over a period of 15 sec. However, using fluorescence recovery after photobleaching, the individual receptors moved at a much faster rate, indicating rapid exchange of receptors on immobile nuclear subdomains. Receptor mobilities for 13 different steroids, measured by fluorescence recovery after photobleaching, appeared to correlate with receptor distribution. Ligands that induced a nonrandom distribution induced slower receptor mobility and vice versa. Finally, application of 2-photon confocal microscopy revealed differences in receptor mobility between nuclear subdomains. Areas of high receptor concentration showed slower mobility than areas of low receptor concentration. Thus, glucocorticoid receptors can be targeted (depending on the ligand) to relatively immobile nuclear subdomains. The transient association of receptor with these domains decreases the mobility of the receptor.  相似文献   

2.
Tissue distribution of the opioid receptor-like (ORL1) receptor   总被引:8,自引:0,他引:8  
Mollereau C  Mouledous L 《Peptides》2000,21(7):907-917
The ORL1 receptor is a G protein-coupled receptor structurally related to the opioid receptors, whose endogenous ligand is the heptadecapeptide nociceptin/orphanin FQ. In this review, data which have contributed to the mapping of the anatomic distribution of the ORL1 receptor have been collated with an emphasis on their relation to physiological functions. The ORL1 receptor is widely expressed in the central nervous system, in particular in the forebrain (cortical areas, olfactory regions, limbic structures, thalamus), throughout the brainstem (central periaqueductal gray, substantia nigra, several sensory and motor nuclei), and in both the dorsal and ventral horns of the spinal cord. Regions almost devoid of ORL1 receptors are the caudate-putamen and the cerebellum. ORL1 mRNA and binding sites exhibit approximately the same distribution pattern, indicating that the ORL1 receptor is located on local neuronal circuits. The ORL1 receptor is also expressed at the periphery in smooth muscles, peripheral ganglia, and the immune system. The anatomic distribution of ORL1 receptor suggests a broad spectrum of action for the nociceptin/orphanin FQ system (sensory perception, memory process, emotional behavior, etc.).  相似文献   

3.
Distribution of serotonin 5-HT1C receptor mRNA in adult rat brain   总被引:4,自引:0,他引:4  
B J Hoffman  E Mezey 《FEBS letters》1989,247(2):453-462
  相似文献   

4.
Regulation of transmembrane signaling by receptor phosphorylation   总被引:65,自引:0,他引:65  
At least two major effects of receptor phosphorylation have been identified--regulation of receptor function, and regulation of receptor distribution. In many cases where phosphorylation directly alters the functions of receptors, this appears to be in a negative direction. Such decreases in receptor activity may reflect reduced ability to interact with biochemical effectors (e.g., the beta-adrenergic receptor, rhodopsin), reduced affinity for binding agonist ligands (EGF,IGF-I, insulin receptors) or reduced enzymatic activity (e.g., tyrosine kinase activity of the insulin or EGF receptor). In all instances, these negative modulations are associated with phosphorylation of serine and/or threonine residues of the receptor proteins. In contrast, the tyrosine kinase receptors also appear to be susceptible to positive modulation by phosphorylation. With these receptors, autophosphorylation of tyrosine residues may lead to enhanced protein-tyrosine kinase activity of the receptors and increased receptor function. In addition, the subcellular distribution of a receptor may be regulated by its phosphorylation status (e.g., the beta-adrenergic receptor, receptors for insulin, EGF, IGF-II, and transferrin). The emerging paradigm is that receptor phosphorylation may in some way promote receptor internalization into sequestered compartments where dephosphorylation occurs. The molecular and cellular mechanisms involved in translating changes in receptor phosphorylation into changes in receptor distribution remain to be elucidated. Moreover, the biological role of receptor internalization may be quite varied. Thus, in the case of the beta-adrenergic receptor, it may serve primarily as a mechanism for bringing the phosphorylated receptors into contact with intracellular phosphatases that dephosphorylate and resensitize it. By contrast, for the transferrin receptor and other receptors involved in receptor-mediated endocytosis, the internalization presumably functions to carry some specific ligand or metabolite into the cell. The role of phosphorylation in regulating receptor function dramatically extends the range of regulatory control of this important covalent modification.  相似文献   

5.
In the receptor-transducer model of pharmacological agonism, rejection of the traditional assumption that receptor molecules are in vast excess of transducer molecules permits the receptors to become distributed among unbound, bound and complexed states. Under these conditions, agonist affinities are liable to be overestimated when the method of irreversible receptor antagonism is used. Graphical tests have been developed to detect distribution, and these were applied to experimental data from the interaction between 5-HT and phenoxybenzamine on aortic tissue. Significant receptor distribution was not detected by the method. However, in the model it was assumed that there was a linear relation between the concentration of ternary complex and pharmacological effect. If this relation was replaced with a saturable one the effect of receptor distribution would be masked. The implications for pharmacologists and medicinal chemists are discussed.  相似文献   

6.
In early experiments Ah receptor appeared to be localized in cytosol when in its unoccupied state and it was thought that the receptor translocated into nuclei only when occupied by its ligands. However, a recent report [Whitlock and Galeazzi (1984) J. Biol. Chem. 259, 980-985] concluded that unoccupied Ah receptor in the intact cell was primarily located within the nucleus and that apparent 'cytosolic' Ah receptor was a redistribution artifact caused by fractionation of cells in large volumes of buffer. We examined the effect of buffer volume and ionic strength on apparent 'cytosolic' versus 'nuclear' distribution of unoccupied Ah receptor in liver from C57BL/6J mice and Sprague-Dawley rats as well as Hepa-1c1c9 cells in culture. In all three systems the Ah receptor appears to shift out of the nuclear fraction and into the cytosolic fraction as the volume of buffer is increased or when the ionic strength of the buffer is increased. In each system, however, the distribution of the Ah receptor was identical to the distribution of each of three standard cytosolic marker enzymes: aldolase, glucose-6-phosphate dehydrogenase and lactate dehydrogenase. Co-distribution of unoccupied Ah receptor with these cytosolic marker enzymes during fractionation at varied buffer volumes and ionic strengths makes it seem unlikely that the unoccupied receptor is predominantly a 'nuclear' component in intact cells. Marker enzyme data favor an interpretation that unoccupied Ah receptor is primarily cytoplasmic or that this soluble protein is in equilibrium between cytoplasm and nucleus.  相似文献   

7.
Affinity partitioning has been employed in the purification of membranes rich in cholinergic receptor from Torpedo californica electric organs. The procedure involves a modification of poly(ethylene oxide)-dextran aqueous phase partitioning systems where a ligand selective for the receptor is conjugated to the poly(ethylene oxide). Specific partitioning of the receptor-containing membranes into the poly(ethylene oxide)-rich phase occurs when bis-alpha,omega-trimethylamino poly(ethylene oxide) or bis-rho-tri-methylammonium phenylamino poly(ethylene oxide) was added to the phase system in low mole ratio. bis-alpha,omega-Methylamino poly(ethylene oxide), which should impart equivalent interfacial electromotive potential to the system but bind poorly to the receptor sites, was much less effective in producing phase distribution changes. The ligand-polymer-dependent phase distribution shifts were blocked by bisquaternary methonium ligands at concentrations consistent with their relative affinities for the cholinergic receptor. Titration or receptor sites with cobra alpha-toxin decreased the phase distribution changes in a linear fashion up to the point of stoichiometry. These observations are consistent with the phase distribution changes being consequent to ligand-polymer association with the pharmacologically important site on the receptor. The affinity partitioning procedure, when employed following an initial purification of the membranes by differential and density gradient centrifugation, yields membrane preparations with a high degree of morphological uniformity and a specific activity between 2.9 and 4.6 nmol of bound cobra alpha-toxin/mg of protein.  相似文献   

8.
Abstract: Both apolipoprotein E (apoE) and the low-density lipoprotein (LDL) receptor are present in brain; however, little is known regarding the function of these proteins in brain, in particular with respect to brain cholesterol. The role of apoE and the LDL receptor in modulating the transbilayer or asymmetric distribution of cholesterol in the exofacial and cytofacial leaflets of synaptic plasma membranes (SPMs) was examined in mutant mice deficient in apoE, the LDL receptor, or both proteins by using the fluorescent sterol dehydroergosterol and fluorescent quenching procedures. Fluidity of the exofacial and cytofacial leaflets was also measured. Cholesterol asymmetry of SPMs was altered in the mutant mice, with the largest effect observed in the LDL receptor-deficient mice. There was an approximately twofold increase in the percent distribution of cholesterol in the exofacial leaflet of the LDL receptor-deficient mice (32%) compared with C57BL/6J mice (15%). Mice deficient in apoE or both proteins also showed a significantly higher percent distribution of cholesterol (23 and 26%, respectively) in the exofacial leaflet compared with the C57BL/6J mice. Although the percent distribution of cholesterol was highest in the exofacial leaflet of the LDL receptor-deficient mice, fluidity of the exofacial leaflet of that group was significantly lower. However, the cholesterol-to-phospholipid ratio of SPMs of the LDL receptor-deficient mice was significantly lower, and this difference was largely the result of a significant increase in the total amount of SPM phospholipid. This study demonstrates for the first time that SPM lipid structure is altered in mice deficient in apoE or the LDL receptor. Although the mechanism that maintains the asymmetric distribution of cholesterol in plasma membranes is not well understood, data of the present experiments indicate that both apoE and the LDL receptor are involved in maintaining the transbilayer distribution of cholesterol.  相似文献   

9.
Although the presence of neurotrophin p75 receptor on sympathetic nerves is a well-recognised feature, there is still a scarcity of details of the distribution of the receptor on cerebrovascular nerves. This study examined the distribution of p75 receptor on perivascular sympathetic nerves of the middle cerebral artery and the basilar artery of healthy young rats using immunohistochemical methods at the laser confocal microscope and transmission electron microscope levels. Immunofluorescence methods of detection of tyrosine hydroxylase (TH) in sympathetic nerves, p75 receptor associated with the nerves, and also S-100 protein in Schwann cells were applied in conjunction with confocal microscopy, while the pre-embedding single and double immunolabelling methods (ExtrAvidin and immuno-gold-silver) were applied for the electron microscopic examination. Immunofluorescence studies revealed “punctuate” distribution of the p75 receptor on sympathetic nerves including accompanying Schwann cells. Image analysis of the nerves showed that the level of co-localization of p75 receptor and TH was low. Immunolabelling applied at the electron microscope level also showed scarce co-localization of TH (which was intra-axonal) and p75. Immunoreactivity for p75 receptor was present on the cell membrane of perivascular axons and to a greater extent on the processes of accompanying Schwann cells. Some Schwann cell processes were adjacent to each other displaying strong immunoreactivity for p75 receptor; immunoreactivity was located on the extracellular sites of the adjacent cell membranes suggesting that the receptor was involved in cross talk between these. It is likely that variability of locations of p75 receptor detected in the study reflects diverse interactions of p75 receptor with axons and Schwann cells. It might also imply a diverse role for the receptor and/or the plasticity of sympathetic cerebrovascular nerves to neurotrophin signalling.  相似文献   

10.
H D Perez  R Holmes  E Kelly  J McClary  W H Andrews 《Gene》1992,118(2):303-304
We cloned a cDNA (RFP) encoding a receptor (RFP) related (70% overall nucleotide homology) to the formyl peptide receptor of human neutrophils (hFPR). RFP is a seven-transmembrane-domain receptor and its distribution is limited to myeloid cells. Domain sequence comparison with hFPR reveals highly conserved regions and provides clues to putative domains involved in ligand binding and receptor desensitization.  相似文献   

11.
The time course of subcellular receptor distribution in porcine endometrial epithelium was studied after intrauterine administration of estradiol alone or in combination with puromycin. In untreated cells, the major proportion of receptor is associated with cytoplasmic membranes. The solubilization of receptor from isolated nuclei is independent of their estradiol content. Smooth cytoplasmic membranes are the site of origin of receptor which is swiftly translocated into the nucleus in a 1:1 ratio with the hormone after exposure of the cells to estradiol. Simultaneously administered puromycin delays receptor synthesis and reveals that the nuclear passage of receptor is terminated by receptor degradation. The synthesis of receptor proceeds in rough endoplasmic membranes. A subsequent finishing and deposition in smooth membranes depends on intact protein synthesis.  相似文献   

12.
13.
利用荧光标记和荧光漂白恢复方法研究了两种人胃腺癌细胞M期与间期时梠中,细胞膜表面ConA受体复合物分子的分布与侧向运动.结果表明:MGC80-3细胞M期时相与SGC7901细胞间期时相膜表面ConA受体复合物分布近似,其侧向运动方式呈扩散型;SGC 7901 M期时相细胞膜表面ConA受体复合物的分布与MGC80-3细胞间期时和相基本类似,其侧向运动主要是流动型.凡是受体复合物是流动型运动的细胞.其膜上可动分子的百分比都寓于扩散型运为的细胞,P值小于0.01.  相似文献   

14.
Handa RK 《Peptides》2002,23(10):1847-1852
Aldehyde fixatives are often used to preserve tissue morphology and thereby aid in the identification of cellular structures expressing a target of interest. However, the effect of fixatives on target detection methods is unpredictable and it is currently unknown whether tissue fixation would allow the accurate detection of angiotensin AT(4) receptors in the kidney. In vitro receptor autoradiography on tissues fixed with 4% paraformaldehyde and 0.5% glutaraldehyde (+/-20% sucrose) had differing effects on the density of (125)I-AT(4) receptor ligand binding without affecting the tissue distribution of ligand binding in the rat and mouse kidney, whereas an increased expression of specific (125)I-AT(4) receptor ligand binding was found in the medulla region of the rabbit kidney. In contrast, such tissue fixation conditions dramatically decreased the renal binding of (125)I-angiotensin II receptor ligands, and altered the distribution of such ligand binding, in all three species. These results suggest that the method of tissue fixation and processing should be used cautiously in angiotensin receptor density measurements but can provide an accurate representation of kidney AT(4) receptor distribution only in the rat and mouse.  相似文献   

15.
16.
G protein-coupled receptors comprise a family of genes that share significant sequence similarity. We have screened a rat genomic library under low stringency hybridization conditions with the coding portion of the hamster beta 2-adrenergic receptor gene to isolate new members of this gene family. We show that one of these clones, clone D, codes for a 5-hydroxytryptamine1A (5-HT1A) binding site since: 1) it possesses an intronless open reading frame encoding a protein with seven putative transmembrane domains and 89% amino acid identity with the human 5-HT1A receptor (G21); 2) when transfected into Ltk- cells, it expresses a ligand-binding site with the pharmacology of the 5-HT1A receptor subtype, including 5-HT- and spiroxatrine-displaceable binding of 8-hydroxy-(2-(N,N-di[2,3-3H]propylamino)-1,2,3,4-tetrahydronaphthalene (KH = 0.8 nM). We further show that clone D encodes a functional receptor because its binding site interacts with G proteins and because it mediates agonist-induced inhibition of basal and stimulated cAMP accumulation in transfected GH4C1 pituitary cells. Finally, we have analyzed the tissue distribution of 5-HT1A receptor mRNA in rat brain and have found that 5-HT1A mRNA is present with the expected distribution of the 5-HT1A receptor (highest in septum and hippocampus) but is present as three RNA species (3.9, 3.6, and 3.3 kilobases). These studies represent the first characterization of receptor function and brain distribution of the cloned rat 5-HT1A receptor.  相似文献   

17.
Summary A computerized quantitative technique was used to analyze the distribution of ferritininsulin receptor sites on rat adipocytes and the effects of cytochalasin B on groups of receptor sites. Computer analysis of separation distances between receptor sites established that insulin receptor sites on adipocytes did not have a random distribution but have a distinct tendency to exist in groups with a maximum separation distance between particles of 400 Å. A peak in the distribution of separation distances occurred at 100–200 Å. Cytochalasin B, but not cytochalasin D, treatment of adipocytes resulted in a decrease in the number of large groups of receptor sites and a corresponding increase in single and paired receptor sites without affecting the separation distance between the remaining grouped receptors. This suggested that when cytochalasin B disrupted the bond holding receptor sites together, it caused complete disruption. These observations provided additional information on the ultrastructural characteristics of the insulin receptor. Further application of these techniques to the analysis of insulin receptors may provide the necessary structural correlates to the biochemically observed differences in insulin action in other tissues and diseased states.  相似文献   

18.
Prostacyclin (PGI(2)) is an important mediator implicated in bone metabolism. Among the natural prostaglandins it is the most potent inhibitor of bone resorption and mediates bone modelling and remodelling induced by strain changes. The effects of prostacyclin depend on its interaction with a specific receptor (IP). Despite its well documented effects on bone the localization and distribution of the IP receptor in human bone remain unknown. The present study used specific antipeptide antibodies to IP receptor for immunolocalization of the IP receptor in normal, osteoporotic and Pagetic human adult bone and in human fetal bone. The IP receptor was detected in fetal and adult osteoclasts and osteoblasts. Fetal osteocytes also expressed IP receptor but not adult osteocytes. Interestingly, the expression of IP receptor in adult osteoblasts was gradually lost as these cells were trapped in the matrix and became osteocytes. The IP receptor showed a perinuclear distribution within the cells, but in multinuclear osteoclasts not all nuclei were positive. Our results showed differences in IP receptor expression in fetal and adult human bone and, in adult bone, with the differentiation of osteoblasts into osteocytes. They also showed that there is no difference on the expression of prostacyclin receptors in Pagetic, osteoporotic and normal human bone, and they confirm the presence of the IP receptor in human osteoblasts as had been demonstrated by our previous study with human osteoblasts in culture.  相似文献   

19.
Summary A combination of direct fluorescence and indirect immunofluorescence microscopy has been used to compare the distribution of the acetylcholine receptor with the distribution of major cytoskeletal and extracellular matrix components during electrocyte differentiation in the electric organs of Torpedo marmorata. Laminin, fibronectin and extracellular matrix proteoglycan are always more extensively distributed around the differentiating cell than the acetylcholine receptor-rich patch that forms on the ventral surface of the cell. The distribution of acetylcholinesterase within the ventral surface of the differentiating electrocyte closely resembles the distribution of the acetylcholine receptor. Areas of apparently high acetylcholine receptor density within the ventrally forming acetylcholine receptor-rich patch are always areas of apparently high extracellular matrix proteoglycan density but are not always areas of high laminin or fibronectin density. Desmin levels appear to increase at the onset of differentiation and desmin initially accumulates in the ventral pole of each myotube as it begins to form an electrocyte. During differentiation F-actin-positive filament bundles are observed that extend from the nuclei down to the ventrally forming acetylcholine receptorrich patch. Most filament bundles terminate in the acetylcholine receptor-rich region of the cell membrane. Electronmicroscopic autoradiography suggests that the filament bundles attach to the membrane at sites where small acetylcholine receptor clusters are found. The results of this study suggest that, out of the four extracellular matrix components studied, only the distribution of acetylcholinesterase (which may be both matrix- and membrane-bound at this stage) closely parallels that of the acetylcholine receptor, and that F-actin filament bundles terminate in a region of the cell that is becoming an area of high acetylcholine receptor density.Abbreviations ACHR nicotinic acetylcholine receptor - ACHE acetylcholinesterase - BSA bovine serum albumin - EMPG extracellular matrix proteoglycan fraction - FITC fluorescein isothiocyanate - FN fibronectin - LN laminin - TBS Tris-HCl-buffered saline - SDS PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis  相似文献   

20.
Dorfman VB  Vega MC  Coirini H 《Life sciences》2006,78(14):1529-1534
Dorsal horn neurons of lumbosacral spinal cord innervate penile vasculature and regulate penile erection. GABAergic system is involved in the regulation of male sexual behavior. Because aging is frequently accompanied by a progressive decline in erectile function, the aim of this work was to examine age-related changes of the GABA-B receptor in the lumbar spinal cord. Sprague-Dawley rats of 10 and 21 days old, 3, 9 and 20 months old were used. GABA-B receptors were evaluated by quantitative autoradiography using [3H]-Baclofen as ligand with or without GABA (10 microM) to determine the non-specific binding. Ten days after birth a homogeneous neuroanatomical distribution pattern was found in the gray matter, however at 20-day-old adult distribution emerged becoming heterogeneous with the highest binding values at layers II-III and X. In dorsal layers a significant decrease was observed in 9-month-old rats while layer X showed an earlier decrease (21-day-old). GABA-B receptor affinity showed significant age-dependent and regional increase. The GABA-B receptor decrease in aged rats seems not to be related to this receptor inhibitory function in penile erection. Moreover the changes found in GABA-B receptor binding anatomical distribution may indicate its role in the morphological development of the lumbar spinal cord rather than in the decline of the erectile function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号