首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intravenous administration of low doses of lysergic acid diethylamide (LSD) or of the selective 5-hydroxytryptamine1A (5-HT1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) depresses the firing activity of dorsal raphe 5-HT-containing neurons, presumably via the activation of 5-HT1A receptors. The present studies were undertaken to determine the effect of different types of 5-HT receptor antagonists on this effect of LSD and 8-OH-DPAT. (-)-Propranolol (2 mg/kg i.v.), methiothepin (2 mg/kg i.p., twice daily for 4 days followed by an additional dose of 2 mg/kg i.p., prior to the experiment), pelanserine (0.5 mg/kg i.v.), and indorenate (125 micrograms/kg i.v.) failed to block the effects of either LSD or 8-OH-DPAT on the firing activity of 5-HT neurons of the dorsal raphe nucleus. However, spiperone (1 mg/kg i.v.) significantly reduced the effect of both LSD and 8-OH-DPAT. These results indicate that, among the five putative 5-HT receptor antagonists tested, only spiperone can antagonize the suppressant effect of 5-HT receptor agonists on the firing of dorsal raphe 5-HT neurons.  相似文献   

2.
Hallucinogens, including mescaline, psilocybin, and lysergic acid diethylamide (LSD), profoundly affect perception, cognition, and mood. All known drugs of this class are 5-HT(2A) receptor (2AR) agonists, yet closely related 2AR agonists such as lisuride lack comparable psychoactive properties. Why only certain 2AR agonists are hallucinogens and which neural circuits mediate their effects are poorly understood. By genetically expressing 2AR only in cortex, we show that 2AR-regulated pathways on cortical neurons are sufficient to mediate the signaling pattern and behavioral response to hallucinogens. Hallucinogenic and nonhallucinogenic 2AR agonists both regulate signaling in the same 2AR-expressing cortical neurons. However, the signaling and behavioral responses to the hallucinogens are distinct. While lisuride and LSD both act at 2AR expressed by cortex neurons to regulate phospholipase C, LSD responses also involve pertussis toxin-sensitive heterotrimeric G(i/o) proteins and Src. These studies identify the long-elusive neural and signaling mechanisms responsible for the unique effects of hallucinogens.  相似文献   

3.
Carbaryl (200 mg/kg or 400 mg/kg, p.o.) significantly elevated serotonin (5-HT) (57–109%) and 5-hydroxy-indoleacetic acid (5-HIAA) (60–78%) levels at 1.0 h in the hypothalamic region of adult male rat brain. Further, administration of carbaryl (200 mg/kg, p.o.) for different time intervals (0.5 h, 1.0 h, and 2.0 h) revealed that both 5-HT and 5-HIAA levels elevated maximally at 0.5 h in hypothalamus. These regional 5-HT and 5-HIAA levels were not significantly affected with pentylenetetrazol (PTZ) at any time after its treatment. But simultaneous administration of carbaryl (200 mg/kg, p.o.) and PTZ (60 mg/kg, s.c.) reduced the carbaryl-induced elevation of both 5-HT and 5-HIAA leveis. Measurement of (i) probenecid-induced (200 mg/kg, i.p.) accumulation and (ii) pargyline-induced (75 mg/kg, i.p.) depletion of hypothalamic 5-HIAA level in the absence or presence of carbaryl (200 mg/kg, p.o.) and/or PTZ (60 mg/kg, s.c.) revealed that (a) carbaryl enhanced the synthesis as well as the breakdown of 5-HT, (b) PTZ had no effect on either of these processes of 5-HT, and (c) carbaryl-induced increased catabolism of 5-HT became normal in the presence of PTZ.  相似文献   

4.
We have earlier shown that d-lysergic acid diethylamide, LSD and its 2-bromo derivative, BOL like the dopamine (DA) antagonists haloperidol increased the rate of the in vivo tyrosine hydroxylation in the striatum measured as the accumulation of DOPA after decarboxylase inhibition.Now we have found that several agents structurally similar to LSD increase the in vivo tyrosine hydroxylation in the striatum. Psilocybin (50 mg/kg i.p.) and N,N-dimethyltryptamine (50 mg/kg i.p.) caused a short-lasting increase of DOPA accumulation, while mescaline (10 – 100 mg/kg i.p.) did not increase the DOPA accumulation. A marked increase of DOPA accumulation was observed after the 5-hydroxytryptamine (5-HT) antagonist cyproheptadine. The effects of LSD and structurally related drugs on the DOPA accumulation in the striatum appear to be mediated via DA antagonism at receptor level. However, these agents may control the DOPA accumulation via other receptors than DA receptors e.g. 5-HT receptors. A control of DOPA accumulation via receptors other than DA receptors appears to be predominant after treatment with N,N-dimethyltryptamine or psilocybin.  相似文献   

5.
At a dose of 5 mg/kg, the tricyclic antidepressant drugs chlorimipramine (CIMI), desipramine (DMI), imipramine (IMI), and chlordesipramine (C-DMI) all blocked the excitatory effects of a low dose (30 μg/kg) of LSD on the acoustic startle response in the rat. Over a dose range from 1–5 mg/kg, CIMI and DMI were about equally potent in blocking the LSD effect, despite the fact that both drugs actually increased brain levels of LSD. In contrast, α-methyl-p-tyrosine did not block the effect of LSD on startle. By themselves, DMI, IMI and C-DMI increased startle amplitude 20–30% whereas CIMI alone had no effect on startle. The ability of CIMI and IMI to block the excitatory effect of LSD on startle is consistent with the hypothesis that prior cessation of raphe cell firing caused indirectly by these drugs with no resultant change in 5-HT availability should pre-empt the ability of LSD to increase startle by directly inhibiting raphe cell firing and decreasing 5-HT availability. The finding that the other tricyclics also block the effect of LSD is not explained by that hypothesis. Results are discussed in terms of the serotonin hypothesis of the action of hallucinogenic drugs on behavior.  相似文献   

6.
The respective contribution of the anterior (AP) and the neuro-intermediate (NIL) lobes of the pituitary gland to changes occuring in plasma β-endorphin (β-EP) and β-lipotropin (β-LPH) titers has been evaluated in the rat after administration of serotonin (5-HT)-acting drugs. β-EP-like immunoreactivity (β-EP-LI) was concurrently evaluated in the mediobasal hypothalamus (MBH). The administration of 50 mg/kg DL 5-hydorxytryptophan (5-HTP) or 12.5 mg/kg fluvoxamine, a 5-HT reuptake blocker, decreased markedly β-EP-LI in the AP and induced a striking rise in plasma β-EP and β-LPH concentrations. Combined administration of fluvoxamine and 5-HTP failed to potentiate the effect of individual treatments. Similarly, administration of 5.0 and 10 mg/kg quipazine, a 5-HT receptor agonist, evoked a marked decrease in β-EP-LI in the AP and a concomitant rise in β-EP and β-LPH concentrations in the plasma, while administration of 1.0 and 5 mg/kg of chlorophenylpiperazine, a weak 5-HT stimulant drug, did not alter the above indices. None of these treatments altered significantly β-EP-LI in the NIL and only the higher dose of quipazine increased it in the MBH. We conclude that brain serotonin neurons exert a stimulatory influence on β-EP and β-LPH release from the AP but, likely, not from the NIL and that hypothalamic endorphins are not implicated in the secretory events occuring at AP level after acute activation of 5-HT neurotransmission.  相似文献   

7.
In two groups of rats trained to discriminate LSD (0.1 mg/kg or 0.24 mg/kg) from saline, tetrahydro-β-carboline (THBC; 1–12 mg/kg as free base) and its derivative 6-methoxy-THBC (1–12 mg/kg as free base) substituted partially for LSD. The substitution of THBC for 0.1 mg/kg of LSD was analyzed further with antagonism tests in 16 animals and was attenuated by the serotonin (5-HT) antagonist BC-105 (pizotifen; 3 mg/kg) but not by the dopamine (DA) antagonist haloperidol (0.1 mg/kg). It was abolished by pre-treatment with the 5-HT synthesis inhibitor p-chlorophenylalanine (100 mg/kg/day for 3 days). In addition, THBC was found to inhibit 3H-LSD binding to homogenates of rat frontal cortex with an IC50 value of 4 μM which is similar to that previously reported for other 5-HT agonists. These data indicate that THBCs exert potent 5-HT agonist actions. Since THBCs have recently been found in mammalian brain and other tissues, the present results are of interest in relation to a possible role of these substances in endogenous psychosis.  相似文献   

8.
In addition to their well recognized activity in blocking uptake of biogenic amines, tricyclic antidepressants have recently been shown, with chronic treatment, to alter neurotransmitter receptor sensitivity. In this study, the responsiveness of facial motoneurons to norepinephrine (NE) and serotonin (5-HT) was assessed with single unit recording and microiontophoretic techniques. Treatment of rats with daily intraperitoneal injections of several clinically effective tricyclics for 14–20 days was found to enhance responses to NE, 5-HT, and to an intravenously administered 5-HT agonist, 5-MeODMT. These changes in sensitivity were not seen in animals chronically treated with saline, chlorpromazine, or fluoxetine, and thus appear specific to antidepressants. Acute effects of tricyclics on NE and 5-HT responses were variable, dependent on the specific drug tested, and appear to have no necessary relation to the pronounced sensitization produced by chronic treatment.  相似文献   

9.
In our recent studies on nicotine-induced changes in neurotransmitters in brain areas associated with cognitive function using a nicotine dose of 0.5 mg/kg administered subcutaneously to conscious freely moving rats, we found changes in dopamine, norepinephrine, and serotonin, and their metabolites, in the areas examined. For the present report we examined changes in these neurotransmitters following administration of lower nicotine doses, to test regional differences in nicotine response and possible threshold levels for some effects of nicotine. The doses used were 0.15 mg/kg and 0.03 mg/kg nicotine administered subcutaneously. Nicotine levels in the brain reached peak values in less than 10 min and decreased with a half-life of about 60 min (0.15 mg/kg) or 30 min (0.03 mg/kg) to values below detection limits (1 ng/g), by the later time points of the 0.03 mg/kg experiments. Nicotine-induced dopamine (DA) increase (and increase in DA metabolites) and decrease in 5-HT levels at 0.15 mg/kg were significant in the cortex, less so in the hippocampus. Norepinephrine (NE) increase at 0.15 mg/kg was much less significant than found previously at 0.5 mg/kg. At a low nicotine dose (0.03 mg/kg), the significant changes observed were a decrease in 5-HT in the hippocampus and small increases of DA and NE in the prefrontal cortex and of NE in the medial temporal cortex. In the nucleus accumbens DA, NE, and 5-HT and their metabolites in the ventral tegmental area, mostly DA and metabolites were increased. We conclude that in areas of cognitive function nicotine-induced DA changes are more concentration dependent than changes in NE or 5-HT, and that there are regional differences in neurotransmitter changes induced by nicotine, with NE changes detectable only in the cortex and 5-HT changes only in the hippocampus at a low nicotine dose, indicating significant regional variation in sensitivity to nicotine-induced neurotransmitter changes in brain areas associated with cognitive function. The decrease in 5-HT shows that nicotine also has indirect effects caused by neurotransmitters released by nicotine. The effects of low nicotine dose are more significant in areas of reward function, indicating differences in sensitivity between cognitive and reward functions.  相似文献   

10.
The present study investigated the involvement of amygdala noradrenergic (NE) and serotonergic (5-HT) systems in memory storage processing. Rats bearing chronic cannulae in the amygdala were trained on a one-trial inhibitory avoidance task and tested for retention 24 hrs later. Five days prior to training, rats received intra-amygdala infusion of vehicle or various doses of N-2-chloroethyl-N-ethyl-2-bromobenzylamine (DSP-4)-a NE-specific neurotoxin when given peripherally. Results showed that pretraining intra-amygdala infusion of 10.0 micrograms or 30.0 micrograms of DSP-4 impaired retention. Further, 30.0 micrograms of DSP-4 also abolished the memory enhancing effect of epinephrine (E) injected peripherally. However, local infusion of DSP-4 depleted not only NE but also 5-HT and DA substantially. Subsequent experiments found that the retention deficit induced by 30.0 micrograms of DSP-4 could be ameliorated by 0.2 microgram NE but not by 5-HT at a wide range of doses infused into the amygdala shortly after training, which ascribed the deficit to depletion of NE. After protecting the 5-HT terminals by a pretreatment of fluoxetine (15.0 mg/kg), pretraining intra-amygdala infusion of 30.0 micrograms DSP-4 shifted the memory-enhancing dose of E from 0.1 mg/kg to 1.0 mg/kg. In contrast, pretraining intra-amygdala infusion of 15.0 micrograms 5,7-dihydroxytryptamine (5,7-DHT) or DSP-4 with a pretreatment of desipramine (DMI, 25.0 mg/kgx2) to protect NE terminals failed to impair retention or attenuate the memory enhancing effect of 0.1 mg/kg E injected peripherally. These findings, taken together, suggest that the memory modulatory effect of peripheral E involved, at least partially, the amygdala NE system.  相似文献   

11.
The differential actions of 5-hydroxytryptamine (5-HT) (100 microM) were investigated on isolated motoneurons, interneurons, and primary sensory neurons from the lamprey spinal cord using patch-clamp techniques. Application of 5-HT did not evoke membrane currents in any of the spinal neurons tested (n = 62). However, in most motoneurons and interneurons (15 of 18), 5-HT produced a small depolarization (2-6 mV), which was not accompanied by a change in input resistance. In the remaining motoneurons and interneurons (3 of 18), 5-HT induced a large depolarization (up to 10-20 mV) and a decrease in input resistance of 20-60%. In most sensory neurons (dorsal sensory cells, DSCs), 5-HT evoked a short-lasting, low-amplitude depolarization, followed by a long-lasting hyperpolarization of 2-7 mV. The DSCs showed no significant change in input resistance to 5-HT application (n = 8). Spike afterpolarization were also differentially modulated by 5-HT. In motoneurons and interneurons, 5-HT decreased the amplitude of the afterhyperpolarization following the action potential while increasing the amplitude of the after depolarization. In the DSCs, no significant effect of 5-HT on spike afterpolarization was observed. 5-HT differentially modulated the current induced by application of N-methyl-D-aspartate (NMDA). In motoneurons and interneurons, 5-HT enhanced NMDA-evoked current, while in DSCs, 5-HT decreased this current. These results demonstrate that 5-HT differentially modulates the activity of functionally different groups of spinal neurons. In motoneurons and interneurons, 5-HT enhances excitation by inducing depolarization and decreasing the afterhyperpolatization, while NMDA currents are enhanced. These effects facilitate the appearance of rhythmic discharges in these cells in the presence of NMDA. In primary dorsal sensory cells, 5-HT enhances inhibition by hyperpolarizing the cells and depressing NMDA currents. These differential effects are presumably mediated by different types of 5-HT receptors on these classes of spinal neurons.  相似文献   

12.
Abstract: In the current study we examined the effects of coadministration of a serotonin 5-HT1A antagonist, (±)-1-(1 H -indol-4-yloxy)-3-(cyclohexylamino)-2-propanol maleate (LY 206130), and a dual 5-HT and norepinephrine (NE) uptake inhibitor, duloxetine, on extracellular levels of NE, 5-HT, dopamine (DA), 5-hydroxyindoleacetic acid, and 3,4-dihydroxyphenylacetic acid in rat hypothalamus microdialysates. LY 206130 (3.0 mg/kg, s.c.) alone significantly increased NE and DA levels by 60 and 34%, respectively, without affecting 5-HT levels. Duloxetine administration at 4.0 mg/kg, i.p. alone produced no significant changes in levels of 5-HT, NE, or DA. In contrast, when LY 206130 and duloxetine were coadministered at 3.0 mg/kg, s.c. and 4.0 mg/kg, i.p., respectively, 5-HT, NE, and DA levels increased to 5.7-, 4.8-, and threefold over their respective basal levels. These data demonstrate that antagonism of somatodendritic 5-HT1A autoreceptors and concomitant inhibition of 5-HT and NE uptake with duloxetine may promote synergistic increases in levels of extracellular 5-HT, NE, and DA in hypothalamus of conscious, freely moving rats.  相似文献   

13.
P D Thut  N R Myslinski 《Life sciences》1976,19(10):1569-1578
L-DOPA (320 mg/kg, i.p.) increased the duration of the clonic phase of post-decapitation convulsions (PDC) by 60% in mice pretreated with the peripheral decarboxylase inhibitor, Ro 4-4602 (50 mg/kg, i.p.). Assays of brains at the time of decapitation showed a 300% increase in dopamine (DM), an 80% reduction in serotonin (5-HT) and no change in norepinephrine (NE) levels. The effect of L-DOPA on PDC was not blocked by haloperidol (0.5 – 5.0 mg/kg), a blocker of DM receptors, nor by diethyldithiocarbamate (400 mg/kg) an inhibitor of NE synthesis. Parachlorophenylalanine (300 mg/kg × 3 days) produced an 80% reduction in 5-HT and a prolongation of PDC similar to that observed after L-DOPA. Prolongation of PDC was also seen after the 5-HT antagonists methysergide (5 mg/kg) and cinanserin (10 mg/kg), but not after cyproheptadine (10 mg/kg). The 5-HT precursor, 5-hydroxytryptophan (100 mg/kg), produced no change in PDC when used alone but inhibited L-DOPA's prolongation of PDC. The results suggest that L-DOPA acts by depleting 5-HT in bulbospinal pathways and thus enhancing reflex activity in the spinal cord.  相似文献   

14.
Metrifonate effects on acetylcholine and biogenic amines in rat cortex   总被引:1,自引:0,他引:1  
The effect of systemic and local administration of metrifonate (MTF), a long-acting cholinesterase inhibitor (ChEl) on extracellular levels of acetylcholine (ACh), norepinephrine (NE), dopamine (DA) and serotonin (5-HT) was investigated in the rat cortex by using transcortical microdialysis. Metrifonate (20, 40, and 80 mg/kg, s.c.) increased ACh levels in a dose-dependent manner above the baseline. Two consecutive administrations (80 mg/kg) enhanced ACh levels producing two similar patterns of elevation. A significant increase in NE was also seen at 80 mg/kg. Systemic administration (20 mg/kg) of MTF produced a significant increase of DA levels. Local cortical perfusion of MTF through the probe caused a significant but slow increase of ACh as well as an increase of NE levels. Compared to NE, the elevation of DA was more rapid and more longlasting. The cortical levels of 5-HT were not modified by MTF given by either route. These results support the concept of MTF being a potential drug for treatment of Alzheimer disease (AD).  相似文献   

15.
LSD (25–50 μg/kg, i.v.) significantly decreased the firing rate of 78% of the dopamine-containing neurons in the substantia nigra of chloral hydrate anesthetized rats. In a subgroup of neurons (22%), LSD either had no clear effect or caused a slight excitation. On the other hand, brom-LSD (100 μg/kg, i.v.), a non-hallucinogenic congener of LSD, had no effect on 71% of dopaminergic cells and slightly reduced the firing rate with 29% of the units. Pretreatment with haloperidol (0.1 mg/kg) blocked the inhibitory effects of LSD, and haloperidol injected following LSD reversed its depressive effects. Non-dopaminergic neurons in the region of the substantia nigra typically showed large increases in firing rate in response to LSD administration. The inhibitory effects of LSD on dopamine-containing neurons are probably not attributable to the serotonergic properties of LSD, since 5-methoxy N,N dimethyltryptamine (25–100 μg/kg), which has central serotonergic properties similar to those of LSD, produced exclusively excitatory effects on the firing rate of dopaminergic cells. These electrophysiological results are consistent with recent behavioral and neurochemical data which suggest that LSD can act as a dopamine agonist in the CNS.  相似文献   

16.
The effect of 5-hydroxytryptamine (5-HT) alteration on brain dopamine (DA), norepinephrine (NE), beta-endorphin (beta E) and immunoreactive insulin (IRI) was studied in Sprague-Dawley diabetic and control rats. Diabetes was induced using alloxan (45 mg/kg), 15 days prior to sacrificing. Both control and diabetic animals were treated with either p-chlorophenylalanine (PCPA, 300 mg/kg) 3 days prior to sacrificing or fluoxetine (10 mg/kg) twice daily for 3 days. PCPA treatment significantly decreased brain content of 5-HT and 5-hydroxyindole acetic acid (5-HIAA) while it caused significant increase and decrease in brain beta E and insulin levels, respectively, in both normal and diabetic rat. Meanwhile, the administration of fluoxetine resulted in significant increase in brain content of 5-HT, DA, NE and insulin but significant decline of beta E in diabetic and saline control rats. The results of this experiment indicate that 5-HT may be regulating both beta E and insulin regardless of the availability of pancreatic insulin.  相似文献   

17.
Hayes MR  Covasa M 《Peptides》2005,26(11):2322-2330
Cholecystokinin (CCK) and serotonin (5-HT) systems have been shown to cooperate interdependently in control of food intake. To assess mechanisms by which CCK and 5-HT systems interact in control of food intake we examined: (1) participation of CCK-1 and 5-HT3 receptors in 5-HT-induced suppression of sucrose intake; (2) the interaction between CCK and 5-HT in suppression of food intake; (3) the role of CCK-1 and 5-HT3 receptors in mediating this interaction. Intraperitoneal administration of 5-HT (0.25, 0.5 and 1.0 mg/kg) significantly reduced intake compared to control in a dose responsive fashion (r2=0.989). Suppression of food intake by 5-HT was significantly attenuated by prior treatment with the 5-HT3 receptor antagonist ondansetron at each 5-HT dose tested (P<0.05), while blockade of CCK-1 receptors by lorglumide had no effect on 5-HT-induced suppression of intake. Administration of CCK-8 (0.5 microg/kg) or 5-HT (0.5 mg/kg) alone significantly reduced sucrose intake by 22.9 and 22.2% respectively, compared to control (P<0.0001). Co-administration of CCK and 5-HT resulted in a synergistic suppression of intake leading to an overall 48.4% reduction in sucrose intake compared to saline (P<0.0001). Concomitant CCK-1 and 5-HT3 receptor blockade by lorglumide and ondansetron respectively, resulted in a complete reversal of the combined CCK and 5-HT-induced suppression of intake. Independent administration of lorglumide or ondansetron did not alter intake compared to control. These studies provide evidence that 5-HT causes suppression in food intake by acting at 5-HT3, not CCK-1 receptors. Furthermore, CCK and 5-HT interact to produce an enhanced suppression of food intake, an effect mediated through concomitant activation of CCK-1 and 5-HT3 receptors.  相似文献   

18.
Ondansetron, a selective serotonin-type 3 (5-HT(3)) receptor antagonist, was used to test the hypothesis that duodenal infusion of isosmotic solutions of Polycose or its hydrolytic product glucose suppressed intake through 5-HT(3) receptors. Polycose suppressed sucrose intake across both concentrations infused (132 mM, 7.6 +/- 0.6 ml; 263 mM, 2.3 +/- 0.5 ml), compared with intake under control conditions (12.6 +/- 0.3 ml, P <0.001). Pretreatment with 1.0 mg/kg ondansetron attenuated reduction of sucrose intake induced only by the highest concentration of Polycose (4.6 +/- 0.8 ml, P = 0.004). Dose-response testing revealed that suppression of food intake by 263 mM Polycose was equally attenuated by ondansetron administered at 1.0, 2.0, and 5.0 mg/kg but not when given at 0.125, 0.25, and 0.5 mg/kg. Acarbose, an alpha-glucosidase inhibitor, attenuated Polycose-induced suppression of food intake, and pretreatment with 1.0 mg/kg ondansetron had no further effect. Suppression of intake after 990 mM glucose but not mannitol infusion was attenuated by pretreatment with 1.0 mg/kg ondansetron. The competitive SGLT(1) inhibitor, phloridzin, had no effect on 60-min 990 mM glucose-induced suppression of intake or the ability of ondansetron to attenuate this suppression of intake. Conversely, glucose-induced suppression of intake was attenuated by phloridzin at earlier time points and further attenuated when rats were pretreated with 1.0 mg/kg ondansetron. Ondansetron administration alone had no effect on intake at any dose tested. We conclude that 5-HT(3) receptors participate in the inhibition of food intake by intraduodenal infusion of carbohydrate solutions through a posthydrolytic, preabsorptive mechanism.  相似文献   

19.
Hallucinogens (psychotomimetic agents) are capable of producing various discriminative stimuli for animals. Serotonergic involvement has been implicated as playing a role in the behavioral effects elicited by, for example, mescaline and DOM. Because certain tryptamine analogs possess high serotonin (5-HT) receptor binding affinities, it was of interest to examine one of the more potent agents. Employing a standard operant test chamber, six rats were trained to respond under a variable-interval 15-second schedule of sweetened-milk reinforcement. 5-Methoxy-N, N-dimethyltryptamine (5-OMe DMT), which possesses a 5-HT receptor affinity much higher than that of mescaline, but nearly equivalent to that of DOM, was found to serve as a discriminative stimulus. Furthermore, the 5-OMe DMT stimulus could be attenuated by the 5-HT antagonist BC-105. The 5-OMe DMT stimulus generalized with DOM suggesting that these two hallucinogens produce qualitatively similar interoceptive cues in rats.  相似文献   

20.
Hypothalamic and brainstem biogenic amine metabolism was investigated in rats following the administration of hypothermic doses of 1-Δ9-tetrahydrocannabinol (THC). The dose-dependent fall in body temperature induced by THC was both rapid in onset and prolonged in duration. The disruption in thermoregulation, however, was unaccompanied by any observed alteration in the concentration of turnover rate of 5-hydroxytryptamine (5-HT) in the brain tissues studied. Norepinephrine (NE) was also unchanged, with the exception of a reduction in the amount of brainstem NE 30 min after the administration of 50 mg/kg THC. These observations indicate that the hypothermic effect of THC is not mediated by changes in brain 5-HT or NE metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号