首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1-Methylisoguanosine, a marine natural product with potent muscle-relaxant and cardiovascular actions in vivo, interacts directly with adenosine receptors in guinea-pig brain slices to stimulate adenylate cyclase. These effects are blocked by theophylline. Comparison of the in vivo pharmacological activity of a number of synthetic analogues of 1-methylisoguanosine with in vitro adenylate cyclase-stimulating ability indicates that compounds lacking the latter biochemical activity have little muscle-relaxant activity. Adenosine is a potent stimulator of adenylate cyclase but is inactive in vivo because of rapid removal from the extracellular environment by uptake and deamination. Unlike adenosine, 1-methylisoguanosine is resistant to deamination and is only poorly accumulated by brain tissue slices or homogenates containing synaptosomes. Since it is an extremely weak competitive inhibitor of adenosine deaminase and only a weak inhibitor of adenosine uptake, it is unlikely to act by potentiating the effects of adenosine itself at extracellular receptors. Thus, the pharmacological effects of 1-methylisoguanosine are apparently due to its actions as a long-lasting adenosine analogue.  相似文献   

2.
The ability of the Luteinizing Hormone-Releasing Hormone (LH-RH) analogs to displace LH-RH from its pituitary receptors was evaluated invitro. The two superactive analogs tested showed higher potency than the antagonists and LH-RH itself, D-Trp6-LH-RH being the most potent. The LH-RH specific binding activity in the pituitary fluctuated throughout the age of the rats. The highest number of LH-RH binding sites were seen on day 35 of age (276 fmol × 10?2/pit) and an increment was induced by 0.05 μg D-Trp6-LH-RH (400 fmol × 10?2/pit). However, 1 μg D-Trp6-LH-RH reduced the binding of LH-RH at all the times studied. In the control animals the number of estradiol binding sites increased on day 42 of age, and 0.05 μg D-Trp6-LH-RH augmented them on day 35 of age. On the contrary, 1 μg D-Trp6-LH-RH diminished the estradiol uterine receptors at all the times studied. Similar results were obtained in the ovariectomized-hypophysectomized rats on day 35 of age. Our studies demonstrated a biphasic action of D-Trp6-LH-RH on LH-RH pituitary receptors and a direct effect on uterus which could be mediated through the uterine estradiol receptors.  相似文献   

3.
Up to now the only drugs known to be able to inhibit the binding of benzodiazepines to rodent brain receptors are members of this chemical family.Zopiclone (RP 27 267), a new drug with a pharmacological profile similar to that of chlordiazepoxide and nitrazepam but entirely different chemically from benzodiazepines, has been tested for its ability to inhibit benzodiazepine binding. In vitro and in vivo studies have shown that zopiclone is able to inhibit the binding of [3H] diazepam and [3H] flunitrazepam to brain receptors. The potency of zopiclone is quite comparable to that of diazepam and nitrazepam in vitro and to that of chlordiazepoxide in vivo.These results confirm the pharmacological similarities existing between zopiclone and the benzodiazepines.  相似文献   

4.
15-Hydroxyprostaglandin dehydrogenase has been purified from swine kidney to a specific activity of near 100 miliunits per mg of protein. The purified enzyme was found to be inhibited by thyroid hormone analogues of which triiodothyroacetic acid was the most potent inhibitor. The concentration required for 50% inhibition was 5 μM for triiodothyroacetic acid. The inhibition by thyroid hormones was uncompetitive and non-competitive with regard to NAD+ and prostaglandin E1, respectively. The sensitivity of this enzyme to thyroid hormones suggests that these hormones may regulate the metabolism of prostaglandins in vivo.  相似文献   

5.
The presence of specific binding sites for the benzodiazepines in brain has generated the hypothesis that an endogenous ligand for this receptor exists. In the present report a series of tryptophan derivatives were tested for their ability to inhibit [3H] diazepam binding to rat brain synaptosomal membranes. Of the derivatives tested melatonin and its brain metabolite N-acetyl 5-methoxy kynurenamine (AMK) were found to be the most potent. Melatonin and AMK display respective Ki values for the inhibition of diazepam binding of 415 μM and 49 μM. Melatonin is therefore twice as potent as inosine or hypoxanthine and AMK about 20-fold more potent. Both compounds display competitive inhibition kinetics and do not inhibit binding of a variety of other neurotransmitters to their respective receptors. The data suggest that these or similar agents may serve as endogenous modulators of the benzodiazepine receptor.  相似文献   

6.
Vitamin D-like steroids added to the culture medium induce a specific calcium-binding protein (CaBP) in embryonic chick duodenum maintained in organ culture. This system provides a biologically relevant assay, i.e., a physiological response in a principle target organ, for the study of the relative biopotency of vitamin D metabolites and analogs. A number of fluoro analogs of vitamin D3 (D3) and its metabolites were assayed in the present study. Analogs fluorinated in the lα position (1α-F-D3) or in both the 1α and 25 positions (1α,25-F2-D3) were markedly more potent than vitamin D3 itself although 1α,25-F2-D3 was only 17th as potent as 1α-F-D3. The 25-fluoro analog (25-F-D3) was a very weak inducer; only 145th as potent as vitamin D3. The 25-fluoro analog of 1α-hydroxyvitamin D3 (1α-OH-25-F-D3) was less potent than its nonfluorinated counterpart. Although 25-fluorination reduced biopotency in all other analogs tested, 24R-OH-25-F-D3 was about 15 times more potent than 24R,25-(OH)2-D3. Of considerable interest was the effect of difluorination at the 24-carbon position: both 24,24-F2-25-OH-D3 and 24,24-F2-1α,25-(OH)2-D3 were about four times as potent as their nonfluorinated counterparts. The 24,24-F2-1α,25-(OH)2-D3 is, therefore, the most potent vitamin D3 analog yet tested in this system i.e., it is four times more potent than the most potent naturally occurring vitamin D3 metabolite, 1α,25-(OH)2-D3.  相似文献   

7.
The ability of a series of tetrahydroisoquinoline (THIQ) alkaloids to inhibit the binding of radioligands to catecholamine receptors in the CNS has been examined. (+) THP was the most potent inhibitor of [3H] dihydroalprenolol binding to β-adrenergic receptors and of [3H] haloperidol to dopaminergic receptors and was the least potent inhibitor of [3H] WB-4101 binding to α-adrenergic receptors. Other THIQ alkaloids examined such as salsoline, salsolinol, and reticuline were less potent than (+) THP in inhibiting radioligand binding to β-adrenergic and dopaminergic receptors, and more potent than (+) THP in inhibiting radioligand to α-adrenergic receptors. The marked potency of (+) THP in inhibiting radioligand binding to β-adrenergic receptors (IC50 ~ 10?7 M) was confirmed by the potency of this compound in inhibiting (?) isoproternol elicited accumulations of cyclic AMP in brain slice preparations. These data indicate that, if formed invivo during alcohol consumption, THIQ derivatives such as THP may affect catecholamine neurons in the CNS.  相似文献   

8.
The metabolism of the prostaglandin F analogues, 15-methyl-Δ4-cis-PGF and 16,16-dimethyl-Δ4-cis-PGF, has been investigated in the cynomolgus monkey and the human female. The two analogues, tritium labelled in the 9β-position, were administered by intramuscular injections into the monkeys and by subcutaneous injections into the human. Excretion of tritium labelled products were followed in urine (in both species) and feces (in monkeys only) and several metabolites were identified by GC/MS. The analogues were found to be resistant to the 15-hydroxy dehydrogenase and furthermore the degradation by β-oxidation was delayed. About 13% of the given dose of 15-methyl-Δ4-cis-PGF was excreted unchanged into urine and feces from the monkey. The corresponding figure for 16,16-dimethyl-Δ4-cis-PGF was about 20%. In addition, a large part of the metabolites had the carbon skeleton intact and were only metabolized by ω-oxidation. The relative resistance to degradation of these two analogues is likely to be the basis for their prolonged pharmacological activity.  相似文献   

9.
3-Hydroxybenzoate 6-hydroxylase from Pseudomonas aeruginosa   总被引:7,自引:0,他引:7  
An inducible 3-hydroxybenzoate 6-hydroxylase has been purified to homogeneity from Pseudomonas aeruginosa. It contains FAD as a prosthetic group. 3-Hydroxybenzoate is quantitatively hydroxylated to give gentisate with equimolar consumptions of NADH and O2. NADPH will substitute as an electron donor, and several aromatic analogues of 3-hydroxybenzoate stimulate reduced nucleotide oxidation by the enzyme with formation of both hydrogen peroxide and hydroxylated products. Of various analogues of 3-hydroxybenzoate, those substituted in 2,4,5 and 6-positions are competent substrates; partial uncoupling of electron flow from hydroxylation with concomitant formation of hydrogen peroxide and “gentisates” occurs. The “natural” product of the reaction, gentisate, is an effector in that it stimulates NADH oxidation with the formation of hydrogen peroxide. 3-hydroxybenzoate 6-hydroxylase thus resembles other flavoprotein hydroxylases in the general regulatory properties dictated by their aromatic substrates, pseudosubstrates or effectors.  相似文献   

10.
Denzimol, a new anticonvulsant drug with a pharmacological profile similar to that of phenytoin, enhances the ataxic and antimetrazol activity of diazepam in rats without affecting its activity against picrotoxin-induced seizures. In vivo and ex vivo denzimol enhances the binding of 3H-flunitrazepam in cortex and in hippocampus but not in cerebellum.The possibility of this increase in the number of benzodiazepine binding sites contributing in some way to enhancement of the depressive and anticonvulsant activity of diazepam is discussed.  相似文献   

11.
Properties of [3H] diazepam binding to rat peritoneal mast cells   总被引:6,自引:0,他引:6  
Benzodiazepine binding to rat peritoneal mast cells was investigated using [3H] diazepam as the radioactive probe. The specific binding of [3H] diazepam reaches equilibrium within 10–15 min, is saturable and is linear with cell number. Scatchard analysis of equilibrium binding indicates the existence of only one class of binding sites with a KD = 90 ± 10 nM and Bmax of 261 ± 60 fmoles/106 cells. The binding of [3H] diazepam is temperature dependent, the highest amount is bound at 0°C and shows a pH-optimum between pH 6.8 – 7.4. The binding of [3H] diazepam is reversible with t12 = 1.2 ± 0.2 min. Based on the relative potency of clonazepam and Ro5-4864 in displacing the specific [3H] diazepam binding, the binding sites in the mast cell are similar to those in the peripheral tissues like lung, liver, and kidney and are different from those in the brain. These data indicate that the mast cells have benzodiazepine binding sites which are of the peripheral type.  相似文献   

12.
Zinc sulphate in the range of 10?4 to 2×10?5 M prevents the binding of C1 to antigen antibody complexes, and the initation of the cascade of events in the classical complement pathway leading to cell lysis. Other heavy metals, Co++, Cd++, Cu++, or Mn++ were without effect in this concentration range. Zinc was ineffective when added after C1 was bound and failed to displace C1 which was already bound to antigen antibody complexes. The ability of zinc to regulate the binding of the zymogen or activated form of C1 to antigen-antibody complexes represents a new method of controlling the initiation of the classical complement pathway.  相似文献   

13.
Benzodiazepine receptors were labeled with [3H] diazepam following intravenous injection in rats. Binding of [3H] diazepam in vivo to rat forebrain membranes was displaceable by co-injection of clonazepam or the pharmacologically active enantiomers of two benzodiazepines, B9 and B10, but was not displaced by equal doses of the pharmacologically in-active enantiomers. Binding of [3H] diazepam invivo was bserved in kidney, liver, and abdominal muscle, but was not stereospecifically diplaced in any peripheral tissue studied. The regional distribution of benzodiazepine receptors in brain was uneven, with specific [3H] diazepam binding being highest in the cerebral cortex and lowest in the ponsmedulla. Preliminary studies of the subcellular distribution of [3H] diazepam binding demonstrated highest specific binding to synaptosomal membranes. These data demonstrate the feasibility of labeling benzodiazepine receptors in rat brain invivo.  相似文献   

14.
Poly d/[3H]A-r5U/ type of synthetic models of bacteriophage DNAs containing thymine analogues were prepared by DNA polymerase and tested for stability against nucleases /r was a n-alkyl group from methyl to pentyl/. The 5-pentyluracil-containing copolymer was found to be most stable: 50 % degradation with pancreatic DNase, spleen DNase, snake venom phosphodiesterase or micrococcal nuclease required 3–15 times as much time as that of poly d/A-T/.  相似文献   

15.
23S,25-Dihydroxyvitamin D3 was isolated from the plasma of vitamin D3-toxic pigs. An ultraviolet absorbance spectrum confirmed its purity. The configuration of the 23-hydroxyl group was determined to be S by comparison of the natural product with synthetic 23R,25- and 23S,25-dihydroxyvitamin D3 by high-pressure liquid chromatography. The affinity of both 23S,25- and 23R,25-dihydroxyvitamin D3 for the plasma vitamin D binding protein was similar to vitamin D3. Thus, with respect to the plasma vitamin D binding protein, 23S,25-dihydroxyvitamin D3 is the least potent, naturally-occurring, dihydroxylated vitamin D3 metabolite known.  相似文献   

16.
A series of mirror image (ent) forms of prostaglandins F2 and E2 have been compared for potency in a hamster antifertility test. In the PGF2 series, ent-compounds surveyed had less potency than corresponding natural structures. For the PGE2 series, 11α-(15S)-ent-PGE2 methyl ester was 10-fold more potent than PGE2. Altering the C-9 hydroxy configuration in the PGF2 series from the natural α to β decreased potency dramatically for compounds tested.  相似文献   

17.
(1) The specificity of d-[6-3H]glucose influx by a Na+-dependent and phlorizin-sensitive transport system in the apical epidermal membrane of the polychaete worm, Nereis diversicolor, was investigated in vivo. (2) The inhibitory effect of eleven d-glucose analogues on d-[6-3H]glucose influx from a 5 μM external concentration was recorded. The inhibitors (each tested at 5, 50, 500 and 5000 μM) were selected to illuminate the configurational requirements for interaction with the d-glucose transport system. (3) The following compounds were found to be significant inhibitors: methyl α-d-glucoside, methyl β-d-glucoside, d-galactose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose, d-xylose, myo-inositol, β-d-fructose; the effect was graded according to inhibitor concentration. l-Glucose also inhibited d-glucose influx but to the same extent at all four concentrations tested, suggesting transport site heterogeneity. d-Mannose and l-arabinose did not inhibit influx. (4) The most potent inhibitor, methyl-α-d-glucoside, was itself a substrate, and its transport was inhibited by phlorizin and d-glucose, as well as by substitution of Na+ in the incubation medium with Li+ or choline+. (5) We conclude that the specificity of the Na+-dependent d-glucose transporter in the apical epidermal membrane of Nereis is similar to that in the apical membrane of vertebrate small intestinal and proximal tubular epithelium, and in the tapeworm integument.  相似文献   

18.
A series of nucleoside transport inhibitors has been tested for their ability to displace [3H]diazepam binding to CNS membranes. No correlation between their potency as [3H]adenosine uptake blockers and as inhibitors of [3H]diazepam binding was found, either in rat or guinea-pig brain tissue. Dipyridamole, a potent adenosine transport inhibitor interacted strongly (Ki = 54 nM) with peripheral-type benzodiazepine binding sites (“acceptor sites”) and was 4–5 fold weaker in displacing [3H]methylclonazepam and [3H]Ro15-1788, ligands selective for the specific central benzodiazepine “receptor”. Unlike the benzodiazepines, dipyridamole had no anticonvulsant action against metrazole-induced convulsions in mice. Ro5-4864, a benzodiazepine which selectively interacts with the peripheral-type benzodiazepine binding site, was approximately equipotent with diazepam in inhibiting [3H]adenosine uptake in brain tissue. These results do not support the idea of a very close link between high-affinity central binding sites for clinically-active benzodiazepines and the adenosine uptake site. The possibility of a connection between benzodiazepine “acceptor” sites and the membrane nucleoside transporter is discussed.  相似文献   

19.
It was previously shown that 5-hexyne-1,4-diamine is a potent enzyme-activated irreversible inhibitor of mammalian ornithine decarboxylase. However this compound has secondary pharmacological effects owing to its in vivo oxidation to 4-aminohex-5-ynoic acid, an irreversible inhibitor of 4-aminobutyrate aminotransferase. The first step of this oxidation is catalysed by mitochondrial monoamine oxidase. The monomethyl and dimethyl analogues of 5-hexyne-1,4-diamine, i.e. 6-heptyne-2,5-diamine and 2-methyl-6-heptyne-2,5-diamine, which cannot be substrate of monoamine oxidase, were tested as selective irreversible inhibitors of ornithine decarboxylase. Our results demonstrate that (2R,5R)-6-heptyne-2,5-diamine is greater than 10 times more potent, both in vitro and in vivo, than α-difluoromethylornithine, the most widely used irreversible inhibitor of this enzyme.  相似文献   

20.
S-Adenosylhomocysteine (SAH) is a potent product inhibitor for indoleamine-N-methyltransferase (INMT) from rabbit lung. The kinetic studies showed that this inhibition was competitive with respect to S-adenosylmethionine (SAM) and noncompetitive with respect to N-methylserotonin (NMS). The Ki value of 1.0 × 10?5M indicated that SAH had a higher affinity than SAM or NMS for the enzyme. SAH seems to form a reversible complex with the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号