共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Structural studies on transmembrane proteins. 2. Spin labeling of bacteriorhodopsin mutants at unique cysteines 总被引:10,自引:0,他引:10
Site-directed mutagenesis was used to produce mutants of bacteriorhodopsin where either glycine-72, threonine-90, leucine-92, or serine-169 was replaced by a cysteine. Two different spin labels were then covalently attached to these sites. The selection of attachment sites covered two postulated loops (72,169) and a membrane-spanning segment (90,92). It was not possible to properly refold the protein labeled at position 90, presumably due to steric problems, but the EPR spectra of the other mutants that were successfully reconstituted in phospholipid vesicles provided information on the dynamics of protein side chains in the vicinity of the label site. A power saturation approach was used to investigate the spin relaxation times, which in turn can be influenced by collisions with paramagnetic species. The differential effect of oxygen and a water-soluble chromium complex on the power-saturation behavior of the spin-labeled mutants was used to obtain topographical information on the sites in the membrane-bound protein. The results are consistent with residues 72 and 169 being located in structured loops exposed to the aqueous phase and residue 92 being localized in the membrane interior, possibly near a helix-helix contact region. 相似文献
3.
Site-directed mutagenesis provides a straightforward means of creating specific targets for chemical modifications of proteins. This capability enhanced the applications of spectroscopic methods adapted for addressing specific structural questions such as the characterization of partially folded and transient intermediate structures of globular proteins. Some applications such as the steady state or time-resolved fluorescence resonance energy transfer (FRET) detection of the kinetics of protein folding require relatively large quantities (approximately 10-100 mg) of site-specific doubly labeled protein samples. Engineered cysteine residues are common targets for labeling of proteins. The challenge here is to develop methods for selective modification of one of two reactive sulfhydryl groups in a protein molecule. A general systematic procedure for selective labeling of each of two cysteine residues in a protein molecule was developed, using Escherichia coli adenylate kinase (AKe) as a model protein. Potential sites for insertion of cysteine residues were selected by examination of the crystal structure of the protein. A series of single-cysteine mutants was prepared, and the rates of the reaction of each engineered cysteine residue with a reference reagent [5,5'-dithiobis(2-nitrobenzoic acid) (DTNB)] were determined. Two-cysteine mutants were prepared by selection of pairs of sites for which the ratio of this reaction rate constant was high (>80). The conditions for the selective labeling reaction were optimized. In a first cycle of labeling, the more reactive cysteine residue was labeled with a fluorescent probe (donor). The second probe was attached to the less reactive site under unfolding conditions in the second cycle of labeling. The doubly and singly labeled mutants retained full enzymatic activity and the capacity for a reversible folding-unfolding transition. High yields (70-90%) of the preparation of the pure, site-specific doubly labeled AK mutant were obtained. The procedure described herein is a general outline of procedures, which can meet the double challenge of both site specificity and large-scale preparation of doubly labeled proteins. 相似文献
4.
Hepcidin is a small disulfide-rich peptide hormone that plays a key role in the regulation of iron homeostasis by binding and mediating the degradation of the cell membrane iron efflux transporter, ferroportin. Since it is a small peptide, chemical synthesis is a suitable approach for the preparation of mature human hepcidin. However, oxidative folding of synthetic hepcidin is extremely difficult due to its high cysteine content and high aggregation propensity. To improve its oxidative folding efficiency, we propose a reversible S-modification approach. Introduction of eight negatively charged sulfonate moieties into synthetic hepcidin significantly decreased its aggregation propensity and, under optimized conditions, dramatically increased the refolding yield. The folded hepcidin displayed a typical disulfide-constrained β-sheet structure and could induce internalization of enhanced green fluorescent protein (EGFP) tagged ferroportin in transfected HEK293 cells. In order to study interactions between hepcidin and its receptor ferroportin, we propose a general approach for site-specific labeling of synthetic hepcidin analogues by incorporation of an l-propargylglycine during chemical synthesis. Following efficient oxidative refolding, a hepcidin analogue with Met20 replaced by l-propargylglycine was efficiently mono-labeled by a red fluorescent dye through click chemistry. The labeled hepcidin was internalized into the transfected cells together with the EGFP-tagged ferroportin, suggesting direct binding between hepcidin and ferroportin. The labeled hepcidin was also a suitable tool to visualize internalization of overexpressed or even endogenously expressed ferroportin without tags. We anticipate that the present refolding and labeling approaches could also be used for other synthetic peptides. 相似文献
5.
6.
7.
To study conformational changes within a single protein molecule, sp-FRET (single pair fluorescence resonance energy transfer) is an important technique to provide distance information. However, incorporating donor and acceptor dyes into the same protein molecule is not an easy task. Here, we report a strategy for the efficient double-labeling of a protein on a solid support. An ubiquitin mutant with two Cys mutations, one with high solvent accessibility and the other with low solvent accessibility, was constructed. The protein was bound to magnetic beads and reacted with the dyes. The first dye reacted with the side-chain of the Cys with the high solvent accessibility and the second with the other Cys under partially denaturing conditions. Using this method, we can easily label two dyes in a site-specific way on ubiquitin with a satisfied yield. The labeling sites for donor and acceptor dyes can be easily swapped. 相似文献
8.
New site-specific protein labeling (SSPL) reactions for targeting-specific, short peptides could be useful for the real-time detection of proteins inside of living cells. One SSPL approach matches bioorthogonal reagents with complementary peptides. Here, hydrazide reactive peptides were selected from phage-displayed libraries using reaction-based selections. Selection conditions included washes of varying pH and treatment with NaCNBH(3) in order to specifically select reactive carbonyl-containing peptides. Selected peptides were fused to T4 lysozyme or synthesized on filter paper for colorimetric assays of the peptide-hydrazide interaction. A peptide-lysozyme protein fusion demonstrated specific, covalent labeling by the hydrazide reactive (HyRe) peptides in crude bacterial cell lysates, sufficient for the specific detection of an overexpressed protein fusion. Chemical synthesis of a short HyRe tag variant and subsequent reaction with two structurally distinct hydrazide probes produced covalent adducts observable by MALDI-TOF MS and MS/MS. Rather than isolating reactive carbonyl-containing peptides, we observed reaction with the N-terminal His of HyRe tag 114, amino acid sequence HKSNHSSKNRE, which attacks the hydrazide carbonyl at neutral pH. However, at the pH used during selection wash steps (<6.0), an alternative imine-containing product is formed that can be reduced with sodium cyanoborohydride. MSMS further reveals that this low pH product forms an adduct on Ser6. Further optimization of the novel bimolecular reaction described here could provide a useful tool for in vivo protein labeling and bioconjugate synthesis. The reported selection and screening methods could be widely applicable to the identification of peptides capable of other site-specific protein labeling reactions with bioorthogonal reagents. 相似文献
9.
The site-selective modification of the proteins RNase A, lysozyme C, and the peptide hormone somatostatin is presented via a kinetically controlled labeling approach. A single lysine residue on the surface of these biomolecules reacts with an activated biotinylation reagent at mild conditions, physiological pH, and at RT in a high yield of over 90%. In addition, fast reaction speed, quick and easy purification, as well as low reaction temperatures are particularly attractive for labeling sensitive peptides and proteins. Furthermore, the multifunctional bioorthogonal bioconjugation reagent (19) has been achieved allowing the site-selective incorporation of a single ethynyl group. The introduced ethynyl group is accessible for, e.g., click chemistry as demonstrated by the reaction of RNase A with azidocoumarin. The approach reported herein is fast, less labor-intensive and minimizes the risk for protein misfolding. Kinetically controlled labeling offers a high potential for addressing a broad range of native proteins and peptides in a site-selective fashion and complements the portfolio of recombinant techniques or chemoenzymatic approaches. 相似文献
10.
S-nitrosylation, a post-translational modification of cysteine residues induced by nitric oxide, mediates many physiological functions. Due to the labile nature of S-nitrosylation, detection by mass spectrometry (MS) is challenging. Here, we developed an S-alkylating labeling strategy using the irreversible biotinylation on S-nitrosocysteines for site-specific identification of the S-nitrosoproteome by LC-MS/MS. Using COS-7 cells without endogenous nitric oxide synthase, we demonstrated that the S-alkylating labeling strategy substantially improved the blocking efficiency of free cysteines, minimized the false-positive identification caused by disulfide interchange, and increased the digestion efficiency for improved peptide identification using MS analyses. Using this strategy, we identified total 586 unique S-nitrosylation sites corresponding to 384 proteins in S-nitroso-N-acetylpenicillamine (SNAP)/l-cysteine-treated mouse MS-1 endothelial cells, including 234 previously unreported S-nitrosylated proteins. When the topologies of 84 identified transmembrane proteins were further analyzed, their S-nitrosylation sites were found to mostly face the cytoplasmic side, implying that S-nitrosylation occurs in the cytoplasm. In addition to the previously known acid/basic motifs, the ten deduced consensus motifs suggested that combination of local hydrophobicity and acid/base motifs in the tertiary structure contribute to the specificity of S-nitrosylation. Moreover, the S-nitrosylated cysteines showed preference on beta-strand, having lower relative surface accessibility at the S-nitrosocysteines. 相似文献
11.
We report the synthesis of 2'-modified nucleosides designed specifically for incorporating labels into oligonucleotides. Conversion of these nucleosides to phosphoramidite and solid support-bound derivatives proceeds in good yield. Large-scale synthesis of 11-mer oligonucleotides possessing the 2'-modified nucleosides is achieved using these derivatives. Thermal denaturation studies indicate that the presence of 2'-modified nucleosides in 11-mer duplexes has minimal destabilizing effects on the duplex structure when the nucleosides are placed at the duplex termini. The powerful combination of phosphoramidite and support-bound derivatives of 2'-modified nucleosides affords the large-scale preparation of an entirely new class of oligonucleotides. The ability to synthesize oligonucleotides containing label attachment sites at 3', intervening, and 5' locations of a duplex is a significant advance in the development of oligonucleotide conjugates. 相似文献
12.
Based on the 639 non-homologous proteins with 2910 cysteine-containing segments of well-resolved three-dimensional structures, a novel approach has been proposed to predict the disulfide-bonding state of cysteines in proteins by constructing a two-stage classifier combining a first global linear discriminator based on their amino acid composition and a second local support vector machine classifier. The overall prediction accuracy of this hybrid classifier for the disulfide-bonding state of cysteines in proteins has scored 84.1% and 80.1%, when measured on cysteine and protein basis using the rigorous jack-knife procedure, respectively. It shows that whether cysteines should form disulfide bonds depends not only on the global structural features of proteins but also on the local sequence environment of proteins. The result demonstrates the applicability of this novel method and provides comparable prediction performance compared with existing methods for the prediction of the oxidation states of cysteines in proteins. 相似文献
13.
Douglas?J. Swartz Leo Mok Sri?K. Botta Anukriti Singh Guillermo?A. Altenberg Ina?L. Urbatsch 《Bioscience reports》2014,34(3)
Pgp (P-glycoprotein) is a prototype ABC (ATP-binding-cassette) transporter involved in multidrug resistance of cancer. We used directed evolution to replace six cytoplasmic Cys (cysteine) residues in Pgp with all 20 standard amino acids and selected for active mutants. From a pool of 75000 transformants for each block of three Cys, we identified multiple mutants that preserved drug resistance and yeast mating activity. The most frequent substitutions were glycine and serine for Cys427 (24 and 20%, respectively) and Cys1070 (37 and 25%) of the Walker A motifs in the NBDs (nucleotide-binding domains), Cys1223 in NBD2 (25 and 8%) and Cys638 in the linker region (24 and 16%), whereas close-by Cys669 tolerated glycine (16%) and alanine (14%), but not serine (absent). Cys1121 in NBD2 showed a clear preference for positively charged arginine (38%) suggesting a salt bridge with Glu269 in the ICL2 (intracellular loop 2) may stabilize domain interactions. In contrast, three Cys residues in transmembrane α-helices could be successfully replaced by alanine. The resulting CL (Cys-less) Pgp was fully active in yeast cells, and purified proteins displayed drug-stimulated ATPase activities indistinguishable from WT (wild-type) Pgp. Overall, directed evolution identified site-specific, non-conservative Cys substitutions that allowed building of a robust CL Pgp, an invaluable new tool for future functional and structural studies, and that may guide the construction of other CL proteins where alanine and serine have proven unsuccessful. 相似文献
14.
The protease coded by a picornavirus is central in the control of the viral replication. It is essential in the production of virus structural proteins, and regulates the viral RNA replicase in infected cells. The properties of the poliovirus protease are summarized and compared with other viruses. The interaction of polio protease with host defenses was examined. A cellular ribosomal protease degrades poliovirus and other "foreign" proteins, thus restricting viral functions. However, shortly after infection, ribosomal protease activity is suppressed, and in virus-infected extracts the enzyme is degraded. A second line of defense are the protein antiproteases of animal sera. Some of these inhibitors are able to complex the polio protease. A regulatory pathway summarizing the possible interactions of viral protease and the host defenses is presented. 相似文献
15.
DNA-binding proteins as site-specific nucleases 总被引:3,自引:0,他引:3
DNA-binding proteins can be converted into site-specific nucleases by linking them to the chemical nuclease 1,10-phenanthroline-copper. This can be readily accomplished by converting a minor groove-proximal amino acid to a cysteine residue using site-directed mutagenesis and then chemically modifying the sulphydryl group with 5-iodoacetamido-1,10- phenanthroline-copper. These chimeric scission reagents can be used as rare cutters to analyse chromosomal DNA, to test predictions based on high-resolution nuclear magnetic resonance and X-ray crystal structures, and to locate binding sites of proteins within genomes. 相似文献
16.
Michael P. Byrne Clarence A. Broomfield Wesley E. Stites 《Journal of Protein Chemistry》1996,15(2):131-136
Mustard gas,bis(2-chloroethyl)sulfide, treatment of proteins is shown to generate significant amounts of covalently crosslinked protein dimers. This is due to the preferential alkylation of cysteine residues. Crosslinking does not occur in the model protein staphylococcal nuclease, which has no cysteine residues. Treatment of cysteine-containing mutants of staphylococcal nuclease with this chemical warfare agent did result in crosslinking. However, these dimers are slowly cleaved back to monomers by an unknown mechanism. The alkylation and crosslinking of cysteine-containing proteins by mustard gas may contribute to its toxicity. 相似文献
17.
Yu-Chih Su Hsing-Yin Chen Ni Chien Ko Chi-Ching Hwang Min Hui Wu Li-Fang Wang Yun-Ming Wang Sheng-Nan Chang Eng-Chi Wang Tzu-Pin Wang 《Analytical biochemistry》2014
Here we report efficient and selective postsynthesis labeling strategies, based on an advanced phosphoramidation reaction, for nucleic acids of either synthetic or enzyme-catalyzed origin. The reactions provided phosphorimidazolide intermediates of DNA or RNA which, whether reacted in one pot (one-step) or purified (two-step), were directly or indirectly phosphoramidated with label molecules. The acquired fluorophore-labeled nucleic acids, prepared from the phosphoramidation reactions, demonstrated labeling efficacy by their F/N ratio values (number of fluorophores per molecule of nucleic acid) of 0.02–1.2 which are comparable or better than conventional postsynthesis fluorescent labeling methods for DNA and RNA. Yet, PCR and UV melting studies of the one-step phosphoramidation-prepared FITC-labeled DNA indicated that the reaction might facilitate nonspecific hybridization in nucleic acids. Intrinsic hybridization specificity of nucleic acids was, however, conserved in the two-step phosphoramidation reaction. The reaction of site-specific labeling nucleic acids at the 5′-end was supported by fluorescence quenching and UV melting studies of fluorophore-labeled DNA. The two-step phosphoramidation-based, effective, and site-specific labeling method has the potential to expedite critical research including visualization, quantification, structural determination, localization, and distribution of nucleic acids in vivo and in vitro. 相似文献
18.
R L Weiss Bizzoco V Reyes 《Cellular and molecular biology, including cyto-enzymology》1992,38(3):337-342
A thin section study of mating Chlamydomonas cell wall-less CW 15 mating type plus (mt+) and mating type minus (mt-) gametes utilized filipin. The results show extensive labeling of mt+ and mt- plasma membranes. No labeling was seen on the mating structure membranes of activated mt+ or mt- gametes. These results indicate that differences exist between the plasma membrane and the mating structure membrane of gametes. If filipin is specific for the 3-beta-OH sterol, ergosterol and/or other Chlamydomonas sterols, then these results imply that the fusing mating structure membranes may be altered or reduced in sterol content. Such lipid specializations may increase local membrane fluidity and thereby facilitate the site-specific cell fusion associated with mating Chlamydomonas gametes. 相似文献
19.
Photoaffinity labeling of serotonin-binding proteins 总被引:5,自引:0,他引:5
A photosensitive arylazide derivative of serotonin (nitroaryl-azidophenyl serotonin, NAP-serotonin) has been synthesized for use in studying the biochemical nature of serotonin binding sites. [3H]-NAP-serotonin possesses a similar ability to bind to the crude membranes of rat brains does [3H]-serotonin and therefore seems suitable for use as a photoaffinity labeling probe for serotonin binding sites. Upon irradiation with ultraviolet light, [3H]-NAP-serotonin covalently attaches to protein components of the brain homogenate. Several distinct radioactively labeled proteins have been separated by sodium dodecyl sulfate polyacrylamide gel electro-phoresis. Their apparent molecular weights were 80,000, 49,000, and 38,000 (±5%). When 1 μM of unlabeled serotonin or d-lysergic acid diethylamide (d-LSD) was added prior to photolysis, the incorporation of [3H]-NAP-serotonin into these proteins was inhibited significantly. No inhibitory effect was observed when dopamine was used. These observations suggest that the photoaffinity labeled proteins are specific for serotonin binding. 相似文献
20.
Fluorescence spectroscopy is an indispensible tool for studying the structure and conformational dynamics of protein molecules both in isolation and in their cellular context. The ideal probes for monitoring intramolecular protein motions are small, cysteine-reactive fluorophores. However, it can be difficult to obtain specific labeling of a desired cysteine in proteins with multiple cysteines, in a mixture of proteins, or in a protein's native environment, in which many cysteine-containing proteins are present. To obtain specific labeling, we developed a method we call cysteine metal protection and labeling (CyMPL). With this method, a desired cysteine can be reversibly protected by binding group 12 metal ions (e.g., Cd2+ and Zn2+) while background cysteines are blocked with nonfluorescent covalent modifiers. We increased the metal affinity for specific cysteines by incorporating them into minimal binding sites in existing secondary structural motifs (i.e., α-helix or β-strand). After the metal ions were removed, the deprotected cysteines were then available to specifically react with a fluorophore. 相似文献