首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A quantitative study was made of the cytotoxicity of methotrexate (MTX) for nontransformed and transformed NIH 3T3 cells in the presence and absence of leucovorin. The study was preceded by an analysis of the growth rates of the cells at low and high population density combined with low and high concentrations of calf serum (CS). The reduced maximal growth rates of the transformed cells at low population densities relative to the nontransformed cells reinforced earlier evidence that heritable damage involving chromosome aberrations drives the process of transformation. When small numbers of transformed cells are cocultured with a large excess of nontransformed cells in the assay for transformed foci, the transformed cells were more readily killed by MTX than the nontransformed cells. The selectivity was increased when leucovorin (folinic acid) was present in the medium. The selective killing of the transformed cells actively multiplying in foci was most pronounced when the background of nontransformed cells had become confluent and their growth was inhibited. However, selectivity has also been demonstrated when transformed and nontransformed cells are growing at their maximum rates at low density despite the lower growth rate of the transformed cells under these conditions. The sensitivity of transformed cells in pure culture to MTX was lower during the first 3 d of subculture than in the following 6 d but decreased to zero a few d after net growth had ceased. The nontransformed cells were more susceptible to killing by MTX in Dulbecco’s modified Eagle’s medium (DMEM) than in MCDB 402, but the transformed cells were sensitive to MTX in both media. The high selectivity of MTX for transformed over nontransformed cells in MCDB 402 results from the presence of 1.0 μM leucovorin (5-formyltetrahydrofolate), a reduced form of the folic acid present in most other culture media. When leucovorin was added to DMEM with its high concentration of folic acid, the resistance to MTX of both nontransformed and transformed cells was greatly increased, but the selectivity of MTX for transformed cells was almost entirely lost. The results indicate that leucovorin protects nontransformed cells against concentrations of MTX that kill transformed cells, but the protection is dependent on the relative amounts of leucovorin to folic acid in the medium. The relative sensitivities of transformed and nontransformed cells in our system to MTX when both cell types are exhibiting their characteristic differential in growth behavior is similar to that described for tumor and normal cells in vivo. Since the unregulated growth behavior of the transformed, tumor-producing cells is efficiently and quantitatively measured in this system, it can be used to develop general principles of treatment and resolve questions of cytotoxic mechanism.  相似文献   

2.
Structural comparison of fibronectins from normal and transformed cells   总被引:4,自引:0,他引:4  
Comparative study of the structures of fibronectins from normal and transformed cells by partial proteolysis as well as by tryptic peptide fingerprinting and analysis of phosphorylation show that: 1) fibronectin molecules from normal and transformed cells probably have very similar primary structures; 2) the phosphorylation of fibronectin is a highly specific and conserved phenomenon; 3) fibronectin from both normal and transformed cells is phosphorylated only on serine residues; 4) although the major sites of phosphorylation in fibronectin are the same in normal and transformed cells, fibronectin from transformed cells appears to be phosphorylated to a much higher extent than that from normal cells.  相似文献   

3.
Transformed fibroblasts in interphase and normal fibroblasts in mitosis were agglutinated by Con A and the lectin from wheat germ, whereas normal fibroblasts in interphase and transformed fibroblasts in mitosis were not agglutinated by these lectins. The percentage of fluorescent cells at non-saturation concentrations of fluorescent ConA was also higher with transformed interphase and normal mitotic cells, than with normal interphase and transformed mitotic cells. Under the same conditions, a similar number of radioactively labeled ConA molecules were bound to normal and transformed cells in interphase and mitosis. Our results indicate different cyclic changes in the surface membrane of normal and transformed fibroblasts, so that regarding interaction with these lectins, normal mitotic cells resemble transformed interphase cells and transformed mitotic resemble normal interphase cells. The data suggest that there is a reversed cyclic change in the mobility of specific surface membrane sites in normal and transformed cells.  相似文献   

4.
C Mazière  C Rampini 《Biochimie》1975,57(10):1189-1196
The phospholipid composition and turnover in normal and in SV 40 transformed hamster fibroblasts were studied. The amount of phospholipid phosphorus relative to protein is lower in transformed hamster fibroblasts than in normal fibroblasts. This amount decreases with increasing cell density until stationary growth is reached. The decrease is largest for the normal fibroblasts. In transformed cells, less sphingomyelin and more diphosphatidyl glycerol are found than in normal cells. The turnover of 32P in sphingomyelin is slower in transformed cells than in normal cells ; the contrary is observed with diphosphatidyl glycerol. On the other hand, in transformed cells, phosphatidyl ethanolamine has a faster turnover than phosphatidyl choline, whereas the contrary is observed in normal cells. Finally, the change to stationary growth slows down the turnover of 32P of all phospholipids, this decrease being more important in transformed cells.  相似文献   

5.
Addition of glycolipids obtained from Salmonella minnesota R mutants to normal, spontaneously transformed, and SV40-transformed rat embryo fibroblasts in culture results in an inhibition of growth of transformed cells but not of normal cells. In the presence of the glycolipid with the smallest carbohydrate chain length, spontaneously transformed cells stop growing when they reach confluency. Inhibition of growth of transformed cells is inversely related to the chain length of the core sugars. Glycolipid mR595 is shown to bind with the cell membrane of transformed cells and elicits an augmentation in the intracellular level of cyclic AMP. Normal cells bind relatively less glycolipid mR595 and show a lower percent of increase in cyclic AMP due to glycolipid mR595 than do transformed cells.  相似文献   

6.
The display of microtubules in transformed cells.   总被引:48,自引:0,他引:48  
M Osborn  K Weber 《Cell》1977,12(3):561-571
Monospecific tubulin antibodies have been used in indirect immunofluorescence microscopy on a variety of well characterized, transformed cell lines grown in tissue culture. Networks of colcemid-sensitive fibers are seen in SV40-transformed 3T3 cells, SV40-transformed rat embryo cells, HeLa cells and other transformed cell lines. In each case, greater than 90% of the cells contain visible microtubular networks, and where individual microtubules can be distinguished, they run for long distances. Documentation of these metworks is more difficult in transformed than in normal cells, because transformed cells are in general more rounded and have less well spread cytoplasm. In addition, the microtubular networks can be readily visualized in "cytoskeletons" of both normal and transformed cells, obtained by treatment of cells with nonionic detergents in a buffer which stabilizes microtubules in vitro. Addition of calcium to this buffer results in in situ fragmentation and destruction of the microtubular network. In view of these results, we conclude that transformed cells contain significant numbers of microtubules, and that in transformed cells, as in normal cells, microtubules are arranged in networks.  相似文献   

7.
Using a method of cocultivation of embryonic Chinese hamster cells (CHEF) with Rous sarcoma cells and infection of CHEF by RSV-SR, it was possible to obtain malignant transformation of hamster cells. The morphologically altered cells became apparent within 15–36 days. In the cells transformed by cocultivation, the genome of RSV was determined by the method of contact of the transformed cell and the chicken cell in vivo; the malignant character of the transformed cells was demonstrated by transfer to a homologous newborn host. Repeated attempts to detect virus production in transformed Chinese hamster cells failed. Prior to malignant transformation and in early transformed cultures the diploid stem-line was maintained. A slight decrease in the proportion of diploid cells in transformed cultures was revealed in some experiments and is discussed. Prolonged cultivation of these cells, as also of control fibroblasts, shifts the stem-line to the hyperdiploid or hypotetraploid region. The mechanism of malignant transformation by RSV is discussed with regard to the action of the viral genome and alteration of the genetic make-up of the cell by the virus.  相似文献   

8.
EGF receptors are found on the surface of most cells, usually with high and low binding affinities. To investigate functional relationships between EGF (EGF-like growth factors) and oncogenes we have characterized the expression of the epidermal growth factor receptor (EGFr) in H-Ras, v-Myc, and H-Ras-v-Myc transformed Balb/3T3 cells. H-Ras cells show a marked decrease in the number of EGFr molecules per cell compared to parental cells. v-Myc and H-Ras-v-Myc transformed cells express an intermediate level of receptors. The majority of the EGF receptors on the parental and oncogene transformed cells bind EGF with low affinity and this low affinity receptor is down-regulated by oncogene transformation. v-Myc expression, in the H-Ras-v-Myc transformed cells, abrogates the receptor down-regulation seen with H-Ras transformation. The mechanism of abrogation is not a result of a change in the p21-Ras concentration in the H-Ras-v-Myc transformed cells. In addition, the mitogenic response to EGF was examined. H-Ras and H-Ras-v-Myc transformed cells do not respond to EGF mitogenically. In contrast, EGF stimulates DNA synthesis in parental cells and v-Myc transfected cells; this result suggests that growth promoting signals from the EGF receptor may not be required in H-Ras transformed cells.  相似文献   

9.
It has not previously been possible to live image the earliest interactions between the host environment and oncogene-transformed cells as they initiate formation of cancers within an organism. Here we take advantage of the translucency of zebrafish larvae to observe the host innate immune cell response as oncogene-transformed melanoblasts and goblet cells multiply within the larval skin. Our studies indicate activation of leukocytes at very early stages in larvae carrying a transformed cell burden. Locally, we see recruitment of neutrophils and macrophages by 48 h post-fertilization, when transformed cells are still only singletons or doublets, and soon after this we see intimate associations between immune and transformed cells and frequent examples of cytoplasmic tethers linking the two cell types, as well as engulfment of transformed cells by both neutrophils and macrophages. We show that a major component of the signal drawing inflammatory cells to oncogenic HRAS(G12V)-transformed cells is H(2)O(2), which is also a key damage cue responsible for recruiting neutrophils to a wound. Our short-term blocking experiments show that preventing recruitment of immune cells at these early stages results in reduced growth of transformed cell clones and suggests that immune cells may provide a source of trophic support to the transformed cells just as they do at a site of tissue repair. These parallels between the inflammatory responses to transformed cells and to wounds reinforce the suggestion by others that cancers resemble non-healing wounds.  相似文献   

10.
Fibronectins from normal and virally transformed hamster cells were compared by several criteria. The fibronectin from transformed cells was similar to that from normal cells in being an intact dimeric glycoprotein with the ability to bind to gelatin, activated thiol-Sepharose, and cells. No evidence was found for proteolytic cleavages or abnormalities in disulfide bonding of transformed cell fibronectin. This fibronectin was also shown to be active in promoting cell attachment, elongation, and alignment. Therefore, the fibronectin produced by transformed cells is not defective. However, it was shown that the transformed cells were partially deficient in their capacity to bind fibronectins from either normal or transformed cells. This deficiency has implications for the significance of the loss of fibronectin on oncogenic transformation. Partial proteolysis of the fibronectins from normal and transformed cells gave rise to the same fragments. However, the glycosylated fragments from transformed cell fibronectin appeared somewhat larger than those from normal cell fibronectin. Analysis of fibronectin glycopeptides showed that transformation leads both to more branches per core and to a higher sialylation of the asparagine-linked complex carbohydrate side chains.  相似文献   

11.
Transformed fibroblasts are specifically eliminated by their nontransformed neighbors through intercellular induction of apoptosis. This process depends on the number of nontransformed effector cells and on the local density of transformed target cells. Intercellular signalling is inhibited by SOD (a scavenger of superoxide anions), taurine (a scavenger of HOCl), 4-aminobenzoyl hydrazide (a mechanism-based inhibitor of peroxidase), DMSO (a hydroxyl radical scavenger), and two inhibitors of NO synthase. Therefore, selective apoptosis induction seems to be based on superoxide anion production by transformed cells, their spontaneous dismutation to hydrogen peroxide, and HOCl generation by a novel effector cell-derived peroxidase. HOCl then interacts with target cell–derived superoxide anions to yield hydroxyl radicals. Due to the short diffusion pathway of superoxide anions, hydroxyl radical generation is confined to the intimate vicinity of transformed cells. In parallel, NO derived from effector cells interacts with superoxide anions of target cells to yield the apoptosis inducer peroxynitrite. Reconstitution experiments using transformed or nontransformed cells in conjunction with myeloperoxidase, HOCl, or an NO donor demonstrated that superoxide anions generated extracellularly by transformed cells participate in intercellular signalling and at the same time determine transformed cells as selective targets for intercellular induction of apoptosis.  相似文献   

12.
BHK21 fibroblasts transformed by hamster sarcoma virus have a higher rate of uptake of hexoses than their untransformed counterparts, and therefore rapidly exhaust glucose from the culture medium. The effects of culturing normal and transformed BHK cells, both in limiting and in excess glucose, on several membrane properties related to malignant transformation have been studied. The increase in the rate of hexose uptake in transformed cells is partially but not entirely dependent on extracellular glucose concentration. Two transformation-increased membrane proteins of molecular weights 95 000 and 78 000 are shown to be regulated by extracellular glucose concentration in both normal and transformed cells. The loss of LETS-protein, the high density of intramembranous particles, the increase in the amount of a 177K integral plasma membrane protein and the increase in the amount of high molecular weight surface glycopeptides in transformed cells, are not related to glucose depletion of the medium. Beside LETS, another iodinated protein, of molecular weight 160 000, is decreased in transformed cells. The exposure of this protein increased in both normal and transformed cells when arrested in G1 by asparagine deprivation.  相似文献   

13.
Both fibronectin and laminin were found by immunofluorescence as a matrix at the surface of normal rat kidney cells. These matrices were absent from the surface of virally transformed rat kidney cells. Soluble fibronectin and laminin were detected in the culture media of the transformed as well as the normal cells. Culture supernates of the transformed cells contained even more fibronectin than the supernates of the transformed cells contained even more fibronectin than the supernates of the normal cells while laminin was present in similar amounts in both culture media. This shows that the loss of fibronectin and laminin from the surface of the transformed cells is caused by failure of the cells to deposit these proteins into an insoluble matrix and not caused by inadequate production. Fibronectins isolated from culture media of the normal and transformed cells were similar in SDS polyacrylamide gel electrophresis. Laminin isolated from culture media by affinity chromatography on heparin-Sepharose followed by immunoprecipitation was composed of three main polypeptides, one with a molecular weight of 400,000 and two with a molecular weight close to 200,000 in both cell types. Fibronectins from both cell types were equally active in promoting cell attachment. Rat fibronectin from transformed cells, like normal cells, when applied to culture dishes coated with fibronectin, readily attached and spread on the substratum, requiring approximately the same amount of fibronectin as the normal cells. On the basis of these results it seem that the failure of the transformed cells to incorporate fibronectin into an insoluble cell surface matix is not a consequence of a demonstrable change in the functional characteristics of the fibronectin molecule or in the ability of the cells to interact with fibronectin. It may depend on as yet unidentified interactions of the cell surface. Similar interactions may be needed for the deposition of laminin into the matrix, because laminin was also absent from the surface of transformed cells, despite its being synthesized by these cells.  相似文献   

14.
Previous studies on the synthesis and function of the protein synthetic machinery through the growth cycle of normal cultured hamster embryo fibroblasts (HA) were extended here to a series of four different clonal lines of polyoma virus-transformed HA cells. Under our culture conditions, these transformed cells could enter a stationary phase characterized by no mitotic cells, very low rates of DNA synthesis, and arrest in a post-mitotic pre-DNA synthetic state. Cellular viability was initially high in stationary phase but, unlike normal cells, transformed cells slowly lost viability. The rate of protein synthesis in the stationary phase of the transformed cells fell to 25-30% of the exponential rate. Though this reduction was similar to that seen in normal cells, it was accomplished by different means. The specific reduction in the ribosome complement per cell to values below that of any cycling cell seen in normal cells, was not seen in any of the transformed lines. This observation, which implies a loss of normal control of ribisome synthesis through the growth cycle after transformation, was confirmed in normal Chinese hamster embryo fibroblasts and transformed CHO cell lines. Normal control of ribosome synthesis was restored in L-73 and LR-73, growth control revertants of one of the transformed CHO lines. The transformed lines reduced their protein synthetic rates in stationary phase either by a greater reduction in the proportion of functioning ribosomes than that seen in normal cells or by a decrease in the elongation rate of functioning ribosomes; the latter effect was not seen in the normal cells. A model for growth control of normal cells and its derangement in transformed cells is presented.  相似文献   

15.
A transformed variant derived as a clone from normal 3T3 cells infected with simian virus 40 (SV40) has been found to possess a phenotype intermediate between that of normal cells and that characteristic of the transformed state, yet cells of the variant still test positively for the SV40-specific nuclear T-antigen. The variant exercises growth control, although not as stringently as do normal cells. Its cell size more closely resembles that of normal cells than of transformed cells. The variant also exhibits levels of spontaneous agglutination that are in line with those characteristic of the normal cells from which it was derived, and far higher than corresponding values for cells exhibiting the fully transformed phenotype. Plasma membranes of variant cells more closely resemble those of transformed cells than of normal cells as estimated by polyacrylamide gel electrophoresis. Perhaps the most distinguishing characteristic of the transformed variant is its complete immunity to agglutination by concanavalin A (Con A), even at concentrations of the lectin as high as 500 mug/ml. Moreover, trypsinization does not render variant cells as agglutinable in the presence of Con A as are untreated fully transformed cells. By contrast the variant displays a low tolerance of Con A toxicity, as monitored by ability to grow after treatment with the lectin, and on this count resembles transformed cells. Moreover a survey of several normal cell lines has revealed that even they do not consistently show resistance to Con A toxicity. These observations indicate that Con A-mediated agglutination and inability to grow after treatment with Con A are quite independent and do not bear a cause and effect relationship.  相似文献   

16.
The presence of cell surface fibronectin was examined by indirect immunofluorescence in 8 groups of related rat fibroblast lines expressing an in vitro transformed phenotype. The transformed cells were selected for anchorage independent growth either after X-ray treatment (X-ray transformed cells) or from control cultures (spontaneously transformed cells). All transformed fibroblasts of the latter class showed reduced expression of fibronectin at the cell surface, whereas most of the X-ray transformed derivatives exhibited a fibronectin-positive phenotype, like the untransformed parents. Moreover, from the fibronectin-negative spontaneously transformed cells, ouabain-resistant variants were isolated, the majority of which had regained the capacity to form an extracellular matrix of fibronectin. These results emphasize the variability in the properties of transformed cells and suggest that the properties of in vitro transformed cells may depend on the cause of transformation.  相似文献   

17.
"Spontaneously" or SV40 virus transformed AL/N mouse cell lines were passed repeatedly through syngeneic mice. Cell lines were re-established in culture from minced pieces of tumors in the presence of concentrated fetal calf serum or from tumor cells dispersed by trypsin. The aim of this study was to compare the two cell lines in regard to the selection processes which operate during such procedures by characterization of the resulting cell lines. Measurements of growth in tissue culture on substratum showed no significant difference between any of the transformed cell lines. The SV40 transformed cells and its derivative cells had a low anchorage requirement for growth. The greatest anchorage requirement for growth was in the normal untransformed cells and in the derivative cells from the "spontaneously" transformed cells which were established from minced tumors. The spontaneously transformed cells and all derivative cells had high tumorigenicity (TD50 is less than 10-2). The SV40 transformed cells had no observable tumorigenicity (TD50 is greater than 10-8), except when injected into irradiated mice (TD50 = 1-5 X 10-5 in the immunocompetent mice, 5 X 10-4 in the irradiated mice). The SV40 transformed derivative cells maintained their SV40 specific T antigen and their susceptibility to lysis by specific antiserum.  相似文献   

18.
The sequence of matrix biosyntheses of DNA, RNA and various proteins in normal and transformed human fibroblasts in the first mitotic cycle after synchronization of cells by double thymidine block was studied. Two important regularities of synthesis of acid-soluble histone-like and acid-insoluble proteins in normal and transformed cells were established. In normal fibroblasts, the synthesis of both acid-soluble and acid-insoluble proteins is minimal before DNA replication and maximal in the G2-phase; that in transformed cells is maximal after removal of the thymidine block and decreased in the G2-phase. In normal fibroblasts, the synthesis of acid-insoluble proteins is maximal before, while that of acid-soluble ones--after the maximum of DNA synthesis. In transformed cells the situation is opposite. RNA synthesis in normal and transformed cells is stimulated at the end of the G2-phase. In normal cells, protein synthesis is coupled with the activation of RNA synthesis, whereas in transformed fibroblasts protein synthesis occurs, in all probability, in the next mitotic cycle. These differences are especially well-pronounced in the expression of some LMG proteins. It is concluded that in transformed cells the regulatory control over the coupling of matrix biosyntheses is impaired.  相似文献   

19.
Synthesis of Cell Coat in Normal and Transformed Cells   总被引:6,自引:0,他引:6  
THE surface of transformed cells has been a focus of considerable attention recently because some of the properties which distinguish these cells from their precursors, such as decreased cell adhesiveness, altered cell orientation and loss of contact and density dependent inhibition1–3, may relate to changes on their surface. A common feature of vertebrate cells is the cell coat, a glycoprotein structure surrounding the plasma membrane4. Electron microscopy has revealed that transformed cells have a thicker coat than normal cells5 and we have now found that coat synthesis in cells transformed by an oncogenic DNA virus and in cells transformed by a chemical carcinogen occurs faster than in normal controls whereas only in the virus-transformed cells is the coat significantly thicker.  相似文献   

20.
The chicken anemia virus protein Apoptin selectively induces apoptosis in transformed cells while leaving normal cells intact. This selectivity is thought to be largely due to cell type-specific localization: Apoptin is cytoplasmic in primary cells and nuclear in transformed cells. The basis of Apoptin cell type-specific localization and activity remains to be determined. Here we show that Apoptin is a nucleocytoplasmic shuttling protein whose localization is mediated by an N-terminal nuclear export signal (NES) and a C-terminal nuclear localization signal (NLS). Both signals are required for cell type-specific localization, since Apoptin fragments containing either the NES or the NLS fail to differentially localize in transformed and primary cells. Significantly, cell type-specific localization can be conferred in trans by coexpression of the two separate fragments, which interact through an Apoptin multimerization domain. We have previously shown that Apoptin interacts with the APC1 subunit of the anaphase-promoting complex/cyclosome (APC/C), resulting in G(2)/M cell cycle arrest and apoptosis in transformed cells. We found that the nucleocytoplasmic shuttling activity is critical for efficient APC1 association and induction of apoptosis in transformed cells. Interestingly, both Apoptin multimerization and APC1 interaction are mediated by domains that overlap with the NES and NLS sequences, respectively. Apoptin expression in transformed cells induces the formation of PML nuclear bodies and recruits APC/C to these subnuclear structures. Our results reveal a mechanism for the selective killing of transformed cells by Apoptin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号