首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simple Sequence Repeats (SSRs) or microsatellites constitute a significant portion of genomes however; their significance in organellar genomes has not been completely understood. The availability of organelle genome sequences allows us to understand the organization of SSRs in their genic and intergenic regions. In the present work, SSRs were identified and categorized in 14 mitochondrial and 22 chloroplast genomes of algal species belonging to Chlorophyta. Based on the study, it was observed that number of SSRs in non-coding region were more as compared to coding region and frequency of mononucleotides repeats were highest followed by dinucleotides in both mitochondrial and chloroplast genomes. It was also observed that maximum number of SSRs was found in genes encoding for beta subunit of RNA polymerase in chloroplast genomes and NADH dehydrogenase in mitochondrial genomes. This is the first and original report on whole genomes sequence analysis of organellar genomes of green algae.  相似文献   

2.
Hundreds of bacterial genomes including the genomes of dozens of plant pathogenic bacteria have been sequenced. These genomes represent an invaluable resource for molecular plant pathologists. In this review, we describe different approaches that can be used for mining bacterial genome sequences and examples of how some of these approaches have been used to analyse plant pathogen genomes so far. We review how genomes can be mined one by one and how comparative genomics of closely related genomes releases the true power of genomics. Databases and tools useful for genome mining that are publicly accessible on the Internet are also described. Finally, the need for new databases and tools to efficiently mine today's plant pathogen genomes and hundreds more in the near future is discussed.  相似文献   

3.

Background  

An increasing number of whole viral and bacterial genomes are being sequenced and deposited in public databases. In parallel to the mounting interest in whole genomes, the number of whole genome analyses software tools is also increasing. GeneOrder was originally developed to provide an analysis of genes between two genomes, allowing visualization of gene order and synteny comparisons of any small genomes. It was originally developed for comparing virus, mitochondrion and chloroplast genomes. This is now extended to small bacterial genomes of sizes less than 2 Mb.  相似文献   

4.
Mitochondrial genomes are more sensitive to the lethal action of EMS than are nuclear genomes of S. cerevisiae. EMS induces efficiently only some types of mutation in nuclear genomes of yeast, and probably the same is true for induction of mutations non-lethal to the mitochondrial genomes.  相似文献   

5.
New method to reveal the sites in genomes obtaining the high information capacity is developed. A distribution of those sites of the length 3 among 16 viral genomes and 11 bacteriophages genomes has been studied. It is shown that some triplets with high information capacity occur in a family of relatively close genomes with the increased frequency. The molecular evolution aspects of a persistence of highly scored sites with respect to their information capacity among various genomes are discussed.  相似文献   

6.

Background  

The conservation of gene order among prokaryotic genomes can provide valuable insight into gene function, protein interactions, or events by which genomes have evolved. Although some tools are available for visualizing and comparing the order of genes between genomes of study, few support an efficient and organized analysis between large numbers of genomes. The Prokaryotic Sequence homology Analysis Tool (PSAT) is a web tool for comparing gene neighborhoods among multiple prokaryotic genomes.  相似文献   

7.
Compositional Properties of Green-Plant Plastid Genomes   总被引:2,自引:0,他引:2  
We studied variation of GC contents among plastid (Pt) genomes of green plants. In the green plants, the GC contents of the whole Pt genomes range from 42.14 to 28.81%. These values are similar to those observed in the mitochondrial (Mt) genomes of the green plants, however, the GC contents in the Pt genomes are not related to those in the Mt genomes or the nuclear (Nc) genomes. In addition, some compositional properties of the three types of genomes are different. Thus, it is suggested that the GC contents of the Pt genomes are maintained independently of the other genomes within a cell. We found that the compositional bias toward AT is strong at the third codon position and in intergenic spacer (IGS) regions in the Pt genomes, and the GC contents (GC3 and GCIGS) at these sites are generally similar within each genome. Additionally, the GC3 and GCIGS are strongly related to the whole-genome GC content. Therefore, the interspecific variation of the GC contents in the Pt genomes is suggested to be mainly caused by the variation of the GC3 and GCIGS, both of which are considered to be under weak selective constraints. Using a maximum likelihood approach, we estimated equilibrium GC3 (eqGC3) of 12 genes in the land-plant Pt genomes. We found an increase in eqGC3 after the divergence of liverworts. These results suggest that genome-wide factors such as GC mutational bias are important for the biased base composition in the Pt genomes.Reviewing Editor: Dr. Brian Morton  相似文献   

8.
Actinomycetes are historically important sources for secondary metabolites (SMs) with applications in human medicine, animal health, and plant crop protection. It is now clear that actinomycetes and other microorganisms with large genomes have the capacity to produce many more SMs than was anticipated from standard fermentation studies. Indeed ~90 % of SM gene clusters (SMGCs) predicted from genome sequencing are cryptic under conventional fermentation and analytical analyses. Previous studies have suggested that among the actinomycetes with large genomes, some have the coding capacity to produce many more SMs than others, and that strains with the largest genomes tend to be the most gifted. These contentions have been evaluated more quantitatively by antiSMASH 3.0 analyses of microbial genomes, and the results indicate that many actinomycetes with large genomes are gifted for SM production, encoding 20–50 SMGCs, and devoting 0.8–3.0 Mb of coding capacity to SM production. Several Proteobacteria and Firmacutes with large genomes encode 20–30 SMGCs and devote 0.8–1.3 Mb of DNA to SM production, whereas cultured bacteria and archaea with small genomes devote insignificant coding capacity to SM production. Fully sequenced genomes of uncultured bacteria and archaea have small genomes nearly devoid of SMGCs.  相似文献   

9.
Since the endosymbiont origin from α-Proteobacteria, mitochondrial genomes have undergone extremely divergent evolutionary trajectories among eukaryotic lineages. Compared with the relatively compact and conserved animal mitochondrial genomes, plant mitochondrial genomes have many unique features, especially their large and complex genomic arrangements. The sizes of fully sequenced plant mitochondrial genomes span over a 100-fold range from 66 kb in Viscum scurruloideum to 11 000 kb in Silene conica. In addition to the typical circular structure, some species of plants also possess linear, and even multichromosomal, architectures. In contrast with the thousands of fully sequenced animal mitochondrial genomes and plant plastid genomes, only around 200 fully sequenced land plant mitochondrial genomes have been published, with many being only draft assemblies. In this review, we summarize some of the known novel characteristics found in plant mitochondrial genomes, with special emphasis on multichromosomal structures described in recent publications. Finally, we discuss the future prospects for studying the inheritance patterns of multichromosomal plant mitochondria and examining architectural variation at different levels of taxonomic organization—including at the population level.  相似文献   

10.
Werner E 《FEBS letters》2005,579(8):1779-1782
Genomes with their complexity and size present what appears to be an impossible challenge. Scientists speak in terms of decades or even centuries before we will understand how genomes and their hosts the cell and the city of cells that make up the multicellular context function. We believe that there will be surprisingly quick progress made in our understanding of genomes. The key is to stop taking the Central Dogma as the only direction in which genome research can scale the semantics of genomes. Instead a top-down approach coupled with a bottom-up approach may snare the unwieldy beast and make sense of genomes. The method we propose is to take in silico biology seriously. By developing in silico models of genomes cells and multicellular systems, we position ourselves to develop a theory of meaning for artificial genomes. Then using that develop a natural semantics of genomes.  相似文献   

11.
Retrieving and organizing data from complete genomes is a time‐consuming task, even more so if the interest lies only in part of the genome (for nongenomic analysis). Furthermore, when comparing several genomes or genes, data retrieval has to be repeated multiple times. We present baca , a software for retrieving, organizing and visualizing multiple mitochondrial genomes. baca takes a GenBank query, retrieves all related genomes and generates multiple fasta files organized both by genomes and genes. A web‐based user interface and an interactive graphical map of all genomes with all genes are also provided. The program is available from http://cibio.up.pt/software/baca .  相似文献   

12.
Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle‐scale barcodes. Next‐generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high‐quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long‐range PCR and sequenced using next‐generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early‐diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome‐scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms.  相似文献   

13.
Simple sequence repeats (SSRs) or microsatellites constitute a countable portion of genomes. However, the significance of SSRs in organelle genomes has not been completely understood. The availability of organelle genome sequences allows us to understand the organization of SSRs in their genic and intergenic regions. In the current study we surveyed the patterns of SSRs in mitochondrial genomes of different taxa of plants. A total of 16 mitochondrial genomes, from algae to angiosperms, have been considered to analyze the pattern of simple sequence repeats present in them. Based on study, the mononucleotide repeats of A/T were found to be more prevalent in mitochondrial genomes over other repeat types. The dinucleotides repeats, TA/AT, were the second most numerous, whereas tri-, tetra-, and pentanucleotide repeats were in less number and present in intronic or intergenic portions only. Mononucleotide repeats prevailed in protein-coding exonic portions of all organisms. These results indicates that microsatellite pattern in mitochondrial genomes is different from nuclear genomes and also focuses on organization and diversity at SSR locuses in mitochondrial genomes. This is the novel report of microsatellite polymorphism in plant mitochondrion on whole genome level.  相似文献   

14.
Genome compaction and stability in microsporidian intracellular parasites   总被引:13,自引:0,他引:13  
Microsporidian genomes are extraordinary among eukaryotes for their extreme reduction: although they are similar in form to other eukaryotic genomes, they are typically smaller than many prokaryotic genomes. At the same time, their rates of sequence evolution are among the highest for eukaryotic organisms. To explore the effects of compaction on nuclear genome evolution, we sequenced 685,000 bp of the Antonospora locustae genome (formerly Nosema locustae) and compared its organization with the recently completed genome of the human parasite Encephalitozoon cuniculi. Despite being very distantly related, the genomes of these two microsporidian species have retained an unexpected degree of synteny: 13% of genes are in the same context, and 30% of the genes were separated by a small number of short rearrangements. Microsporidian genomes are, therefore, paradoxically composed of rapidly evolving sequences harbored within a slowly evolving genome, although these two processes are sometimes considered to be coupled. Microsporidian genomes show that eukaryotic genomes (like genes) do not evolve in a clock-like fashion, and genome stability may result from compaction in addition to a lack of recombination, as has been traditionally thought to occur in bacterial and organelle genomes.  相似文献   

15.
All amino acid sequences derived from 248 prokaryotic genomes, 10 invertebrate genomes (plants and fungi) and 10 vertebrate genomes were analysed by the autocorrelation function of charge sequences. The analysis of the total amino acid sequences derived from the 268 biological genomes showed that a significant periodicity of 28 residues is observable for the vertebrate genomes, but not for the other genomes. When proteins with a charge periodicity of 28 residues (PCP28) were selected from the total proteomes, we found that PCP28 in fact exists in all proteomes, but the number of PCP28 is much larger for the vertebrate proteomes than for the other proteomes. Although excess PCP28 in the vertebrate proteomes are only poorly characterized, a detailed inspection of the databases suggests that most excess PCP28 are nuclear proteins.  相似文献   

16.
Six bacterial genera containing species commonly used as probiotics for human consumption or starter cultures for food fermentation were compared and contrasted, based on publicly available complete genome sequences. The analysis included 19 Bifidobacterium genomes, 21 Lactobacillus genomes, 4 Lactococcus and 3 Leuconostoc genomes, as well as a selection of Enterococcus (11) and Streptococcus (23) genomes. The latter two genera included genomes from probiotic or commensal as well as pathogenic organisms to investigate if their non-pathogenic members shared more genes with the other probiotic genomes than their pathogenic members. The pan- and core genome of each genus was defined. Pairwise BLASTP genome comparison was performed within and between genera. It turned out that pathogenic Streptococcus and Enterococcus shared more gene families than did the non-pathogenic genomes. In silico multilocus sequence typing was carried out for all genomes per genus, and the variable gene content of genomes was compared within the genera. Informative BLAST Atlases were constructed to visualize genomic variation within genera. The clusters of orthologous groups (COG) classes of all genes in the pan- and core genome of each genus were compared. In addition, it was investigated whether pathogenic genomes contain different COG classes compared to the probiotic or fermentative organisms, again comparing their pan- and core genomes. The obtained results were compared with published data from the literature. This study illustrates how over 80 genomes can be broadly compared using simple bioinformatic tools, leading to both confirmation of known information as well as novel observations.  相似文献   

17.
Evolution of bacterial genomes   总被引:1,自引:0,他引:1  
This review examines evolution of bacterial genomes with an emphasis on RNA based life, the transition to functional DNA and small evolving genomes (possibly plasmids) that led to larger, functional bacterial genomes.  相似文献   

18.
Compositional distributions in the three codon positions of the coding sequences of 12 fully sequenced prokaryotic genomes, which are publicly available, were investigated. A universal compositional correlation was observed in most of the genomes under investigation irrespective of their overall genomic GC contents. In all the genomes, the GC contents at the first codon positions are always greater than the overall GC contents of the genomes whereas the reverse is true in the case of second codon positions. GC contents at the third codon positions are higher than the overall genomic GC contents in high GC containing genomes, and the opposite situation was found in case of low GC genomes except for Helicobacter pylori. In high-GC rich genomes, the GC contents at the first + second codon positions are less than the GC contents at the third codon positions, and they are low in low-GC genomes except for Helicobacter pylori. The distributions of four bases at the three different positions were also investigated for all 12 organisms. It was observed that in high-GC genomes G is the most dominant base and in low-GC genomes A is the most dominant base in the first codon positions. But purine bases, i.e., (A + G), predominantly occur in the first codon position. In the second codon position, A is the most dominant base in most of the organisms and G is the least dominant base in all the organisms. There is no unique regular pattern of individual bases at the third codon positions; however, there are significant differences in the occurrences of (G + C) contents in the third codon positions among the different organisms. Calculations of dinucleotide frequencies in 12 different organisms indicate that in GC-rich genomes GG, GC, CC, and CG dinucleotides are the most dominant whereas the reverse is true in case of low-GC genomes. Biological implications of these results are discussed in this paper.  相似文献   

19.
李金玉  杨姗  崔玉军  王涛  滕越 《遗传》2021,(2):142-159
具有最小基因组的细菌只包含维持自我生命复制所必需的基因,其作为一种潜在的工业生产平台具有诸多优势.由于高通量DNA测序和合成技术的发展,目前已经构建了多种缩减基因组的菌株.本文首先介绍了最小基因组的概念,其次总结了细菌必需基因的相关研究进展,然后梳理了人工缩减与合成微生物基因组的相关工作,最后探讨了在设计和组装基因组的...  相似文献   

20.
To investigate the evolution pattern and phylogenetic utility of duplicate control regions (CRs) in mitochondrial (mt) genomes, we sequenced the entire mt genomes of three Ixodes species and part of the mt genomes of another 11 species. All the species from the Australasian lineage have duplicate CRs, whereas the other species have one CR. Sequence analyses indicate that the two CRs of the Australasian Ixodes ticks have evolved in concert in each species. In addition to the Australasian Ixodes ticks, species from seven other lineages of metazoa also have mt genomes with duplicate CRs. Accumulated mtDNA sequence data from these metazoans and two recent experiments on replication of mt genomes in human cell lines with duplicate CRs allowed us to re-examine four intriguing questions about the presence of duplicate CRs in the mt genomes of metazoa: (1) Why do some mt genomes, but not others, have duplicate CRs? (2) How did mt genomes with duplicate CRs evolve? (3) How could the nucleotide sequences of duplicate CRs remain identical or very similar over evolutionary time? (4) Are duplicate CRs phylogenetic markers? It appears that mt genomes with duplicate CRs have a selective advantage in replication over mt genomes with one CR. Tandem duplication followed by deletion of genes is the most plausible mechanism for the generation of mt genomes with duplicate CRs. Once duplicate CRs occur in an mt genome, they tend to evolve in concert, probably by gene conversion. However, there are lineages where gene conversion may not always occur, and, thus, the two CRs may evolve independently in these lineages. Duplicate CRs have much potential as phylogenetic markers at low taxonomic levels, such as within genera, within families, or among families, but not at high taxonomic levels, such as among orders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号