首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental alteration of litter sex ratios in a mammal   总被引:1,自引:0,他引:1  
Adaptive theory predicts that mothers would be advantaged by adjusting the sex ratio of their offspring in relation to their offspring's future reproductive success. Studies investigating sex ratio variation in mammals, including humans, have obtained notoriously inconsistent results, except when maternal condition is measured around conception. Several mechanisms for sex ratio adjustment have been proposed. Here, we test the hypothesis that glucose concentrations around conception influence sex ratios. The change in glucose levels resulted in a change in sex ratios, with more daughters being born to females with experimentally lowered glucose, and with the change in glucose levels being more predictive than the glucose levels per se. We provide evidence for a mechanism, which, in tandem with other mechanisms, could explain observed sex ratio variation in mammals.  相似文献   

2.
Despite the growing literature on facultative sex-ratio adjustment in chromosomal sex-determining vertebrate taxa (birds, mammals), the consistency of results is often low between studies and species. Here, we investigate the primary and secondary offspring sex ratio of a small passerine bird, the Eurasian Penduline Tit (Remiz pendulinus) in three consecutive years. This species has a uniquely diverse breeding system, in which the male (and/or the female) abandons the nest during egg-laying, and starts a new breeding attempt. This allowed us to test (1) whether patterns of parental care, i.e., male-only care, female-only care or biparental desertion, influence offspring sex ratio, and (2) whether the offspring sex ratio is repeatable between successive clutches of males and females. Using molecular markers to sex 497 offspring in 176 broods, we show that (1) offspring sex ratio does not depend on which parent provides care, and (2) the offspring sex ratio is not repeatable between clutches of a given individual. The overall primary and secondary offspring sex ratio at a population level is not different from parity (54 ± 6% males, and 50 ± 3% (mean ± SE), respectively). We suggest that ecological and phenotypic factors, rather than individual traits of parents, may influence offspring’s sex, and conclude that there is currently no evidence for a facultative adjustment of offspring sex ratio in the Penduline Tit.  相似文献   

3.
Whether birds and mammals adaptively adjust their offspring sex ratios in response to their environment is much debated. A source of confusion is that different studies show different patterns, with sex ratio adjustment appearing to occur in some cases but not others. The extent to which this reflects interesting biological variation due to differences in the underlying selective forces, as opposed to statistical noise, is not clear. Cooperatively breeding species offer an opportunity to address this problem because the strength of selection on sex ratio adjustment can be estimated. When helping behavior is sex dependent, parents are predicted to overproduce the helping sex when this sex is rare or absent. We show here that the extent of this behavior depends on the benefit that helpers bring to parents: there is greater sex ratio adjustment when helpers bring larger benefits. Variable selection on sex ratio adjustment may thus explain variable empirical findings.  相似文献   

4.
Sex allocation theory predicts that a female should produce the offspring of the sex that most increases her own fitness. For polygynous species, this means that females in superior condition should bias offspring production toward the sex with greater variation in lifetime reproductive success, which is typically males. Captive mammal populations are generally kept in good nutritional condition with low levels of stress, and thus populations of polygynous species might be expected to have birth sex ratios biased toward males. Sex allocation theory also predicts that when competition reduces reproductive success of the mother, she should bias offspring toward whichever sex disperses. These predicted biases would have a large impact on captive breeding programs because unbalanced sex ratios may compromise use of limited space in zoos. We examined 66 species of mammals from three taxonomic orders (primates, ungulates, and carnivores) maintained in North American zoos for evidence of birth sex ratio bias. Contrary to our expectations, we found no evidence of bias toward male births in polygynous populations. We did find evidence that birth sex ratios of primates are male biased and that, within primates, offspring sex was biased toward the naturally dispersing sex. We also found that most species experienced long contiguous periods of at least 7 years with either male‐ or female‐biased sex ratios, owing in part to patterns of dispersal (for primates) and/or to stochastic causes. Population managers must be ready to compensate for significant biases in birth sex ratio based on dispersal and stochasticity. Zoo Biol 19:11–25, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

5.
During embryonic development, offspring are exposed to hormones of both maternal and sibling origin. Maternal stress increases offspring exposure to corticosterone, and, in polytocous animals, the sex ratio or intrauterine position can influence the levels of androgens and estrogens experienced by the offspring. Such hormone exposure has the potential to influence many important morphological and behavioural aspects of offspring, in particular sexually dimorphic traits. Although well known in rodents, the impact of prenatal hormone exposure in other vertebrates is poorly documented. We experimentally investigated the relationship between maternal stress, population density, sex ratio (a surrogate for the degree of exposure to steroids produced by siblings), and sexual dimorphism in a viviparous lizard, Lacerta vivipara. Our results show that prenatal sex ratios have consequences for sexually dimorphic morphology (ventral scale count) in both sexes, but with no effect of maternal stress or any interaction between the two. Embryonic steroid exposure can potentially be an important factor in generating individual variation in natural populations of viviparous animals.  相似文献   

6.
Viviparity as a constraint on sex-ratio evolution   总被引:1,自引:0,他引:1  
Abstract In polytocous mammals, the sex ratio during gestation can influence a variety of morphological, physiological, and life-history traits because of steroid leakage between fetuses. Similar phenomena have also recently been described for a viviparous lizard. Some of these effects have important fitness consequences by influencing reproductive success later in life. Thus, biasing the sex ratio toward one sex may lead to a decreased fitness for the other sex, and therefore constrain the evolution of skewed sex ratios. By incorporating effects of sex ratio on offspring fitness in a simple sex-allocation model, I show that, under some circumstances (1) skewed sex ratios are predicted to evolve, and (2) this cost can constrain the evolution of skewed sex ratios.  相似文献   

7.
POTENTIAL MECHANISMS FOR SEX RATIO ADJUSTMENT IN MAMMALS AND BIRDS   总被引:11,自引:0,他引:11  
Sex ratio skews in relation to a variety of environmental or parental conditions have frequently been reported among mammals and, though less commonly, among birds. However, the adaptive significance of such sex ratio variation remains unclear. This has, in part, been attributed to the absence of a low-cost physiological mechanism for sex ratio manipulation by the parent. It is shown here that several recent findings in reproductive biology are suggestive of many potential pathways by which gonadotropins and steroid hormones could interfere with the sex ratio at birth. And these hormone levels are well-known to be influenced by many parameters which have been invoked in correlating with offspring sex ratios. Hence, it is argued that the significant, but inconsistent sex ratio biases reported in mammalian and avian populations are coherent with current knowledge on reproductive physiology in those species. However, whether such variations can be viewed at as a consequence of physiological constraint or as adaptive sex ratio adjustment, has still to be determined.  相似文献   

8.
9.
Birds have demonstrated a remarkable ability to manipulate offspring sex. Previous studies suggest that treatment with hormones can stimulate females to manipulate offspring sex before ovulation. For example, chronic treatments with corticosterone, the primary stress hormone produced by birds, stimulated significant skews toward female offspring. It has been suggested that corticosterone acts by influencing which sex chromosome is donated by the heterogametic female bird into the ovulated ovarian follicle. However, it is difficult to pinpoint when in developmental time corticosterone affects offspring sex, because in previous studies corticosterone treatment was given over a long period of time. We treated laying hens with acute high-dose corticosterone injections 5 h before the predicted time of ovulation and quantified the sexes of the subsequently ovulated eggs to determine whether mechanisms exist by which corticosterone can skew offspring sex ratios just before ovulation. We hypothesized that an injection of corticosterone coincident with segregation of the sex chromosomes would stimulate hens to produce more female than male offspring. Contrary to our predictions, hens injected with corticosterone produced a significant bias toward male offspring, nearly 83%. These results suggest that acute corticosterone treatment during meiosis I can influence primary sex ratios in birds, potentially through nonrandom chromosome segregation. Furthermore, acute corticosterone exposure, compared with chronic exposure, may act through different mechanisms to skew offspring sex.  相似文献   

10.
In many vertebrates, male offspring are affected more than female offspring by adverse conditions during growth, resulting in facultative adjustment of offspring sex ratio by parents in response to social and environmental conditions during breeding. The greater vulnerability of male offspring is generally attributed to their higher energy requirements associated with their larger size, although greater sensitivity to adverse conditions could be related to other factors such as negative effects of androgens on male physiology. To control for sexual differences in body size, we examined variation in offspring sex ratio in the Common Tern Sterna hirundo , a species with negligible sexual size dimorphism. In this species, the last-laid egg (termed the c-egg) is smaller than the first two and hatches last, so that the chick obtains relatively little food and hence has a low probability of survival to fledging. This species thus provides a powerful model for examining sex-linked mortality and sex ratio variation under natural conditions. We found that the sex ratio of c-eggs, but not of earlier laid eggs, was significantly biased in favour of females. Chicks hatched from c-eggs (termed c-chicks) had low survival but female c-chicks had significantly higher survival than male c-chicks. These data provide strong evidence that factors other than sexual size dimorphism are responsible for producing greater vulnerability of male offspring to adverse conditions during growth.  相似文献   

11.
Maternal Investment of the Virunga Mountain Gorillas   总被引:1,自引:1,他引:0  
The Trivers & Willard hypothesis (TWH) predicts that females with more resources should bias their maternal investment toward offspring of the sex that is most likely to benefit from those additional resources. This paper examines the sex allocation of 61 female mountain gorillas (Gorilla beringei beringei) of the Virunga volcanoes, Rwanda from 1967 to 2004. Like most highly dimorphic, polygynous mammals, mountain gorillas are expected to show greater variance in reproductive success among males than females, so mothers in good condition should bias their investment toward sons. Using dominance rank as the indicator of maternal condition, the TWH was tentatively supported by our results with interbirth intervals (IBI). Dominant mothers had longer IBI following the birth of sons, relative to the longer IBI that subordinate mothers had with daughters. In contrast, maternal condition did not have a significant effect on birth sex ratios. We also found no significant relationships with other variables that might influence birth sex ratios (e.g., maternal age, parity, or group size), and the overall birth sex ratio was not significantly different from a 50:50 split. Collectively, our results suggest that female mountain gorillas do not control the sex ratio of their offspring at birth, but they may adjust their subsequent maternal investment. This conclusion is consistent with recurring questions about whether any adjustments in birth sex ratios occur in primates.  相似文献   

12.
In species where offspring fitness is sex-specifically influenced by maternal reproductive condition, sex allocation theory predicts that poor-quality mothers should invest in the evolutionarily less expensive sex. Despite an accumulation of evidence that mothers can sex-specifically modulate investment in offspring in relation to maternal quality, few mechanisms have been proposed as to how this is achieved. We explored a hormonal mechanism for sex-biased maternal investment by measuring and experimentally manipulating baseline levels of the stress hormone corticosterone in laying wild female European starlings (Sturnus vulgaris) and examining effects on sex ratio and sex-specific offspring phenotype adjustment. Here we show that baseline plasma corticosterone is negatively correlated with energetic body condition in laying starlings, and subsequent experimental elevation of maternal baseline plasma corticosterone increased yolk corticosterone without altering maternal condition or egg quality per se. Hormonal elevation resulted in the following: female-biased hatching sex ratios (caused by elevated male embryonic mortality), lighter male offspring at hatching (which subsequently grew more slowly during postnatal development), and lower cell-mediated immune (phytohemagglutinin) responses in males compared with control-born males; female offspring were unaffected by the manipulation in both years of the study. Elevated maternal corticosterone therefore resulted in a sex-biased adjustment of offspring quality favorable to female offspring via both a sex ratio bias and a modulation of male phenotype at hatching. In birds, deposition of yolk corticosterone may benefit mothers by acting as a bet-hedging strategy in stochastic environments where the correlation between environmental cues at laying (and therefore potentially maternal condition) and conditions during chick-rearing might be low and unpredictable. Together with recent studies in other vertebrate taxa, these results suggest that maternal stress hormones provide a mechanistic link between maternal quality and sex-biased maternal investment in offspring.  相似文献   

13.
Wild G  West SA 《The American naturalist》2007,170(5):E112-E128
Tests of sex allocation theory in vertebrates are usually based on verbal arguments. However, the operation of multiple selective forces can complicate verbal arguments, possibly making them misleading. We construct an inclusive fitness model for the evolution of condition-dependent brood sex ratio adjustment in response to two leading explanations for sex ratio evolution in vertebrates: the effect of maternal quality on the fitness of male and female offspring (the Trivers-Willard hypothesis [TWH]) and local resource competition (LRC) between females. We show (1) the population sex ratio can be either unbiased or biased in either direction (toward either males or females); (2) brood sex ratio adjustment can be biased in either direction, with high-quality females biasing reproductive investment toward production of sons (as predicted by the TWH) or production of daughters (opposite to predictions of the TWH); and (3) selection can favor gradual sex ratio adjustment, with both sons and daughters being produced by both high- and low-quality mothers. Despite these complications, clear a priori predictions can be made for how the population sex ratio and the conditional sex ratio adjustment of broods should vary across populations or species, and within populations, across individuals of different quality.  相似文献   

14.
Telomeres are DNA-protein complexes at the ends of chromosomes that control genomic integrity but appear to become shorter with age and stress. To test whether stress causes telomere attrition, we exposed the offspring of wild-caught house mice (Mus musculus) to stressful conditions and examined the changes in telomere length over six months. We found that females exposed to males and reproductive stress (either with or without crowding) had significantly shorter telomeres than controls, and males exposed to crowding stress had shorter telomeres than males that were not crowded. Our results indicate that stress alters telomere dynamics, causing attrition and hindering restoration, and these effects are sex dependent. Telomeres may thus provide a biomarker for assessing an individual's cumulative exposure or ability to cope with stressful conditions.  相似文献   

15.
Herbivore species sharing a host plant often compete. In this study, we show that host plant-mediated interaction between two insect herbivores-a generalist and a specialist-results in a sex ratio shift of the specialist's offspring. We studied demographic parameters of the specialist Tupiocoris notatus(Hemiptera: Miridae)when co-infesting the host plant Nicotiana attenuata(Solanaceae) with the generalist leafhopper Empoasca sp.(Hemiptera: Cicadellidae). We show that the usually female-biased sex ratio of T. notatus shifts toward a higher male proportion in the offspring on plants coinfested by Empoasca sp. This sex ratio change did not occur after oviposition, nor is it due differential mortality of female and male nymphs. Based on pyrosequencing and PCR of bacterial 16 S rRNA amplicons, we concluded that sex ratio shifts were unlikely to be due to infection with Wolbachia or other known sex ratio-distorting endosymbionts. Finally, we used transgenic lines of N.attenuata to evaluate if the sex ratio shift could be mediated by changes in general or specialized host plant metabolites. We found that the sex ratio shift occurred on plants deficient in two cytokinin receptors(irCHK2/3).Thus, cytokinin-regulated traits can alter the offspring sex ratio of the specialist T.notatus.  相似文献   

16.
  • 1 Adaptive adjustments in offspring sex ratios in mammals have long been reported, but the conditions and mechanisms that prompt shifts in the proportion of sons and daughters born are still unclear.
  • 2 Empirical evidence indicates that offspring sex in mammals can be related to a diversity of environmental and maternal traits. However, the underlying assumptions regarding offspring and maternal fitness are rarely tested.
  • 3 Physiological mechanisms of maternal selection of offspring sex may occur at many stages during the prolonged maternal investment stage, and a pluralistic approach to studying mechanisms might prove fruitful.
  • 4 This review highlights the apparent frequency, in marsupial mammals, of sex ratio bias, which has largely been recorded as conforming to one of a few hypotheses.
  • 5 Marsupials are ideally suited to experiments involving cross‐fostering of offspring, which can allow rigorous tests of the fitness consequences of rearing one sex vs. the other. The reproductive biology of marsupials lends the group to detailed studies of the timing and physiological correlates of offspring sex biases.
  • 6 Many components of metatherian biology may prove advantageous in experimental studies of sex allocation in mammals, and together may provide a prosperous avenue for examining adaptive and mechanistic hypotheses in mammalian sex allocation.
  相似文献   

17.
Facultative adjustment of sex ratios by mothers occurs in some animals, and has been linked to resource availability. In mammals, the search for consistent patterns is complicated by variations in mating systems, social hierarchies and litter sizes. Humans have low fecundity, high maternal investment and a potentially high differential between the numbers of offspring produced by sons and daughters: these conditions should favour the evolution of facultative sex ratio variation. Yet little is known of natural mechanisms of sex allocation in humans. Here, using data from 740 British women who were unaware of their foetus's gender, we show that foetal sex is associated with maternal diet at conception. Fifty six per cent of women in the highest third of preconceptional energy intake bore boys, compared with 45% in the lowest third. Intakes during pregnancy were not associated with sex, suggesting that the foetus does not manipulate maternal diet. Our results support hypotheses predicting investment in costly male offspring when resources are plentiful. Dietary changes may therefore explain the falling proportion of male births in industrialized countries. The results are relevant to the current debate about the artificial selection of offspring sex in fertility treatment and commercial 'gender clinics'.  相似文献   

18.
Maternal reproductive investment includes both the energetic costs of gestation and lactation. For most humans, the metabolic costs of lactation will exceed those of gestation. Mothers must balance reproductive investment in any single offspring against future reproductive potential. Among mammals broadly, mothers may differentially invest in offspring based on sex and maternal condition provided such differences investment influence future offspring reproductive success. For humans, there has been considerable debate if there are physiological differences in maternal investment by offspring sex. Two recent studies have suggested that milk composition differs by infant sex, with male infants receiving milk containing higher fat and energy; prior human studies have not reported sex‐based differences in milk composition. This study investigates offspring sex‐based differences in milk macronutrients, milk energy, and nursing frequency (per 24 h) in a sample of 103 Filipino mothers nursing infants less than 18 months of age. We found no differences in milk composition by infant sex. There were no significant differences in milk composition of mothers nursing first‐born versus later‐born sons or daughters or between high‐ and low‐income mothers nursing daughters or sons. Nursing frequency also showed no significant differences by offspring sex, sex by birth order, or sex by maternal economic status. In the Cebu sample, there is no support for sex‐based differences in reproductive investment during lactation as indexed by milk composition or nursing frequency. Further investigation in other populations is necessary to evaluate the potential for sex‐based differences in milk composition among humans. Am J Phys Anthropol 152:209–216, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
There is evidence of offspring sex ratio adjustment in a range of species, but the potential mechanisms remain largely unknown. Elevated maternal corticosterone (CORT) is associated with factors that can favour brood sex ratio adjustment, such as reduced maternal condition, food availability and partner attractiveness. Therefore, the steroid hormone has been suggested to play a key role in sex ratio manipulation. However, despite correlative and causal evidence CORT is linked to sex ratio manipulation in some avian species, the timing of adjustment varies between studies. Consequently, whether CORT is consistently involved in sex-ratio adjustment, and how the hormone acts as a mechanism for this adjustment remains unclear. Here we measured maternal baseline CORT and body condition in free-living blue tits (Cyanistes caeruleus) over three years and related these factors to brood sex ratio and nestling quality. In addition, a non-invasive technique was employed to experimentally elevate maternal CORT during egg laying, and its effects upon sex ratio and nestling quality were measured. We found that maternal CORT was not correlated with brood sex ratio, but mothers with elevated CORT fledged lighter offspring. Also, experimental elevation of maternal CORT did not influence brood sex ratio or nestling quality. In one year, mothers in superior body condition produced male biased broods, and maternal condition was positively correlated with both nestling mass and growth rate in all years. Unlike previous studies maternal condition was not correlated with maternal CORT. This study provides evidence that maternal condition is linked to brood sex ratio manipulation in blue tits. However, maternal baseline CORT may not be the mechanistic link between the maternal condition and sex ratio adjustment. Overall, this study serves to highlight the complexity of sex ratio adjustment in birds and the difficulties associated with identifying sex biasing mechanisms.  相似文献   

20.
1. Here we examine how sex ratio variation in house sparrow broods interacts with other demographic traits and parental characteristics to improve the understanding of adaptive significance and demographic effects on variation in sex ratio. 2. The sex ratio in complete broods did not deviate significantly from parity (54.9% males). 3. There was sex-specific seasonal variation in the probability of recruitment. Male nestlings that hatched late in the breeding season had larger probability of surviving than early hatched males. 4. An adaptive adjustment of sex ratio should favour production of an excess of males late in the breeding season. Accordingly, the proportion of male offspring increased throughout the breeding season. 5. A significant nonlinear relationship was present between sex ratio and age of the female. However, there was no relationship between parental phenotype and standardized hatch day that could explain the observed seasonal change in sex ratio. 6. The sex-specific number of offspring recruited by a pair to subsequent generations was closely related to the brood sex ratio. 7. These results indicate an adaptive adjustment of sex ratio to seasonal variation in environmental conditions that affects the offspring fitness of the two sexes differently. Our results also suggest that such a sex ratio variation can strongly influence the demography and structural composition of small passerine populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号