首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary A plant transformation and regeneration system has been developed for Populus species. Leaf explants, from stabilized shoot cultures of a Populus hybrid NC-5339 (Populus alba x grandidentata), were co-cultivated with Agrobacterium tumefaciens on a tobacco nurse culture. Both oncogenic and disarmed strains of A. tumefaciens harboring a binary vector which contained two neomycin phophotransferase II (NPT II) and one bacterial 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase (aroA) chimeric gene fusions were used. Shoots did not develop when leaf explants were co-cultivated with the binary disarmed strain of A. tumefaciens. However, transformed plants with and without the wild type T-DNA were obtained using an oncogenic binary strain of A. tumefaciens. Successful genetic transformation was confirmed by NPT II enzyme activity assays, Southern blot analysis and immunological detection of bacterial EPSP synthase by Western blotting. This is the first report of a successful recovery of transformed plants of a forest tree and also the first record of insertion and expression of a foreign gene of agronomic importance into a woody plant species.  相似文献   

3.
Poplar canker is a kind of serious disease of poplar branches in China and all over the world. In China, the poplar canker is mainly caused by three pathogens of Cytospora chrysosperma, Phomopsis macrospora and Fusicoccum aesculi, which is hard to control. A collection of 1,013 bacterial isolates obtained from the poplar stems in 9 regions of China. Of all the strains tested, 13 bacterial isolates inhibiting three pathogens (C. chrysosperma, P. macrospora and F. aesculi) growth were selected, whose inhibition zone width were more than 15 mm. Strain JK-SH007 exhibited the most obvious antagonistic activity. Besides, this strain also produced extracellular hydrolytic enzymes (β-1, 3-glucanases, proteases and chitinases). This bacterium had no pathogenicity and was identified as Burkholderia cepacia complex (Bcc) genomovar IX: B. pyrrocinia by the Biolog identification system combined with 16S rDNA and recA gene sequence analysis and morphological, physiological and biochemical methods characteristics. B. pyrrocinia JK-SH007 exhibited the highest biocontrol and colonization capabilities. After 3 months, plant height and ground diameter in poplar seedlings inoculated with JK-SH007 were significantly (P < 0.05) higher than in control (non-inoculated) plants. The selected B. cepacia isolate colonized poplar stems and leaves endophytically, promoting plant growth and suppressing pathogenic activities of C. chrysosperma, P. macrospora and F. aesculi on seedling of poplar. This is one of the few reports dealing with isolation and characterization of B. cepacia strains with biocontrol activity against the poplar canker. The endophytic isolate also has the potential to perform as plant growth promoter.  相似文献   

4.
Transgenic white poplar (Populus alba L.) plants expressing a novel Arabidopsis thaliana cysteine proteinase inhibitor (Atcys) gene have been produced using Agrobacterium tumefaciens-mediated gene transfer. Internodal stem segments of cv. Villafranca were co-cultivated with the EHA105 pBI-Atcys A. tumefaciens strain. Sixteen putative transgenic plant lines were regenerated from different calli with a transformation efficiency of 11%. The integration and expression of the cysteine proteinase inhibitor (Atcys) gene into the plant genome was confirmed by Southern and northern blot analyses. Papain inhibitory activity was detected in poplar transgenic tissues by means of a specific in vitro assay. Such activity was sufficient to inhibit most of the digestive proteinase activity of chrysomelid beetle (Chrysomela populi L.) and confer resistance to C. populi larvae on selected transgenic plants. A close correspondence between the inhibition of papain and resistance to poplar leaf beetle was observed in all tested transgenic lines. Our results indicate that Atcys could be succesfully employed in breeding programmes aimed at the selection of new poplar genotypes resistant to major insect pests.  相似文献   

5.
The DnaK/Hsp70 family is a molecular chaperone that binds non-native states of other proteins, and concerns to various physiological processes in the bacterial, plant and animal cells. Previously, we showed that overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica (ApDnaK) enhances tolerance to abiotic stresses such as high salinity and high temperature in tobacco plants. Here, we tested the transformation of poplar (Populus alba) with ApDnaK for enhancing the growth of transformed poplar plants. Under control growth conditions, transgenic poplar plants exhibited similar growth rates with the wild-type plants during young seedlings under low light intensity, whereas they showed faster growth, larger plant size, and higher cellulose contents when poplar plants were grown under high light intensity. Transgenic young poplar plants exhibited more rapid recovery from the stresses of high salinity, drought, and low temperature compared with those of the wild type plants when poplar plants were grown under low light intensity. These results suggest that ApDnaK could be useful to enhance the growth rate as well as to increase the stress tolerance.  相似文献   

6.
7.
Poplar is an important crop and a model system to understand molecular processes of growth, development and responses to environmental stimuli in trees. In this study, we analyzed gene expression in white poplar (Populus alba) plants subjected to chilling. Two forward suppression-subtractive-hybridization libraries were constructed from P. alba plants exposed to low non-freezing temperature for 6 or 48 h. Hundred and sixty-two cDNAs, 54 from the 6-h library and 108 from the 48-h library, were obtained. Isolated genes belonged to six categories of genes, specifically those that: (i) encode stress and defense proteins; (ii) are involved in signal transduction; (iii) are related to regulation of gene expression; (iv) encode proteins involved in cell cycle and DNA processing; (v) encode proteins involved in metabolism and energetic processes; and (vi) are involved in protein fate.Different expression patterns at 3, 6, 12, 24, 48 h at 4 °C and after a recovery of 24 h at 20 °C were observed for isolated genes, as expected according to the class in which the gene putatively belongs. Forty-four of 162 genes contained DRE/LTRE cis-elements in the 5′ proximal promoter of their orthologs in Populus trichocarpa, suggesting that they putatively belong to the CBF regulon. The results contribute new data to the list of possible candidate genes involved in cold response in poplar.  相似文献   

8.
Embryo axes excised from mature seeds of pea (Pisum sativum L.) cv. ‘Sponsor’ were used as explants for Agrobacterium-mediated transformation using pGreenII 0229 binary vectors. The vectors harbored a chimeric chitinase gene (chit30), driven by the constitutive 35S promoter or the elicitor inducible stilbene synthase (vst) promoter from grape (Vitis vinifera L.). The secretion signal of the bacterial chitinase gene from Streptomyces olivaceoviridis ATCC 11238 (DSM 41433) was replaced by the A. thaliana basic chitinase leader sequence. Functional properties of the recombinant gene were tested in tobacco as a model system before the long process of pea transformation was undertaken. Several transgenic pea clones were obtained and the transgenic nature confirmed by different molecular methods. The accumulation and activity of chitinase in stably transformed plants were examined by Western blot analysis and in-gel assays, which showed the presence of an additional 3 isoform bands. Using in vitro bioassays with Trichoderma harzanium as a model, we found an inhibition or delay of hyphal extension, which might indicate enhanced antifungal activity compared with non-transformed pea plants. Up to the 4th generation, the transgenic plants did not show any phenotypic alterations compared with non-transgenic control plants.  相似文献   

9.
10.
Yang M S  Mi D  D. Ewal  Wang Y  Liang H Y  Zhen Z X 《农业工程》2006,26(11):3555-3561
Two partly modified insect-resistant genes (BtCryI Ac gene [Bt gene toxin against Lepidopterean insects] and API gene [arrowhead proteinase inhibitor]) were transferred to the triploid hybrid of Chinese white poplar ((Populus tomentosa Carr. × Populus bolleana Louche) × Populus tomentosa Carr.) mediated by A. tumefaciens. The survival of Agrobacterium in transgenic plants was examined during the processes of transplanting and subculturing on the nutrient medium. The results suggested that 80% of the plants, which were obtained by repeated selection on media added with 50 mg/L kanamycin and 300 mg/l carbenicillin, showed positive reactions after examination using molecular methods. The ELISA test indicated that the Bt toxoprotein was expressed in seven of the transgenic sub-clones. Leaves, stems, and roots of all the 28 transgenic plants were cultured on the YEB medium added with 50 mg/L kanamycin, and it was found that Agrobacterium survived in three sub-clones (33, 37, 5) and could have existed for 24 months in the bottle. These three transgenic sub-clones were transplanted and cultivated for one month in the room, and then the target Agrobacterium was found in rhizosphere of the sub-clone 33.  相似文献   

11.
cDNA encoding caffeoyl CoA O-methyltransferase (CCoAOMT) from Chinese white poplar ( Populus tomentosa Carr.) was cloned by RT-PCR and sequenced. Northern analysis displayed that the CCoAOMT was expressed specifically in the developing secondary xylem and its expression was coincident with lignification. The antisense CCoAOMT cDNA was transformed into P. tremula×P. alba mediated by Agrobacterium tumefaciens (Smith et Townsend) Conn. Transgenic plants were identified with PCR, PCR-Southern and Southern analysis. Lignin content in 5- to 6-month-old transgenic plants was measured. One of the transgenic lines had significant reduction of 17.9% in Klason lignin content as compared with that of untransformed poplar. The results demonstrate that antisense repression of CCoAOMT is an efficient way to reduce lignin content for improving pulping property in engineered trees.  相似文献   

12.
Wang H  Wang C  Liu H  Tang R  Zhang H 《Plant cell reports》2011,30(11):2037-2044
Transgenic technology has been successfully used for gene function analyses and trait improvement in cereal plants. However, its usage is limited in woody plants, especially in the difficult-to-transform but commercially viable hybrid poplar. In this work, an efficient regeneration and transformation system was established for the production of two hybrid aspen clones: Populus alba × P. berolinensis and Populus davidiana × P. bolleana. A plant transformation vector designed to express the reporter gene uidA, encoding β-glucuronidase (GUS), driven by the cauliflower mosaic virus 35S promoter, was used to detect transformation event at early stages of plant regeneration, and to optimize the parameters that may affect poplar transformation efficiency. Bacterium strain and age of leaf explant are two major factors that affect transformation efficiency. Addition of thidiazuron (TDZ) improved both regeneration and transformation efficiency. The transformation efficiency is approximately 9.3% for P. alba × P. berolinensis and 16.4% for P. davidiana × P. bolleana. Using this system, transgenic plants were usually produced in less than 1 month after co-cultivation. The growth characteristics and morphology of transgenic plants were identical to the untransformed wild type plants, and the transgenes could be inherited by vegetative propagation, as confirmed by PCR, Southern blotting, RT–PCR and β-glucuronidase staining analyses. The establishment of this system will help to facilitate the studies of gene functions in tree growth and development at a genome level, and as well as the introduction of some valuable traits in aspen breeding.  相似文献   

13.
14.
Entomopathogenic fungi are currently being used for the control of several insect pests as alternatives or supplements to chemical insecticides. Improvements in virulence and speed of kill can be achieved by understanding the mechanisms of fungal pathogenesis and genetically modifying targeted genes, thus improving the commercial efficacy of these biocontrol agents. Entomopathogenic fungi, such as Beauveria bassiana, penetrate the insect cuticle utilizing a plethora of hydrolytic enzymes, including chitinases, which are important virulence factors. Two chitinases (Bbchit1 and Bbchit2) have previously been characterized in B. bassiana, neither of which possesses chitin-binding domains. Here we report the construction and characterization of several B. bassiana hybrid chitinases where the chitinase Bbchit1 was fused to chitin-binding domains derived from plant, bacterial, or insect sources. A hybrid chitinase containing the chitin-binding domain (BmChBD) from the silkworm Bombyx mori chitinase fused to Bbchit1 showed the greatest ability to bind to chitin compared to other hybrid chitinases. This hybrid chitinase gene (Bbchit1-BmChBD) was then placed under the control of a fungal constitutive promoter (gpd-Bbchit1-BmChBD) and transformed into B. bassiana. Insect bioassays showed a 23% reduction in time to death in the transformant compared to the wild-type fungus. This transformant also showed greater virulence than another construct (gpd-Bbchit1) with the same constitutive promoter but lacking the chitin-binding domain. We utilized a strategy where genetic components of the host insect can be incorporated into the fungal pathogen in order to increase host cuticle penetration ability.  相似文献   

15.
cDNA encoding caffeoyl CoA O-methyltransferase (CCoAOMT) from Chinese white poplar ( Populus tomentosa Carr.) was cloned by RT-PCR and sequenced. Northern analysis displayed that the CCoAOMT was expressed specifically in the developing secondary xylem and its expression was coincident with lignification. The antisense CCoAOMT cDNA was transformed into P. tremula×P. alba mediated by Agrobacterium tumefaciens (Smith et Townsend) Conn. Transgenic plants were identified with PCR, PCR-Southern and Southern analysis. Lignin content in 5- to 6-month-old transgenic plants was measured. One of the transgenic lines had significant reduction of 17.9% in Klason lignin content as compared with that of untransformed poplar. The results demonstrate that antisense repression of CCoAOMT is an efficient way to reduce lignin content for improving pulping property in engineered trees.  相似文献   

16.
17.
Trunk diseases are potential threats to the poplar industry worldwide, including Iran. A survey on trunk diseases of Populus nigra in north‐western Iran revealed a new canker disease associated with dieback and decline of this host in West Azarbaijan Province of Iran. Wood samples were collected from poplar trees showing canker, dieback and decline symptoms and taken to the laboratory. A total of 173 fungal isolates were recovered from symptomatic tissues, of those 147 isolates had similar cultural and morphological features on potato dextrose agar. Based on a combination of morphological characteristics and phylogenetic inferences including DNA sequence data from the internal transcribed spacer regions (ITS1, 5.8S rDNA, and ITS2), all 147 isolates were identified as Cryptosphaeria pullmanensis. The remaining 26 isolates were identified as Cytospora chrysosperma. Pathogenicity of Cr. pullmanensis on two‐year‐old Pnigra and Populus alba saplings under glasshouse conditions confirmed that Cr. pullmanensis is pathogenic on P. nigra and P. alba. Cryptosphaeria pullmanensis is here reported from Iran causing Cryptosphaeria canker on poplar trees for the first time. However, its host range, the extent of geographical distribution and management strategies remain to be examined.  相似文献   

18.
利用RACE结合RT-PCR技术,从巴西橡胶树(Hevea brasiliensis)总RNA中扩增得到长度为1234 bp的WRKY基因cDNA全长编码序列。通过氨基酸同源性比对,该序列推导的氨基酸序列与蓖麻、白杨的WRKY同源性分别为79%和73%,表明分离的cDNA序列为橡胶树WRKY基因,命名为HbWRKY1。通过构建pCAMBIA1304-HbWRKY1植物表达载体,经农杆菌GV3101介导,将HbWRKY1基因导入烟草(Nicotiana tabacum)中,对所获得的潮霉素抗性烟草株系进行PCR鉴定。结果表明,HbWRKY1基因已整合到65株转基因植株中。干旱胁迫试验表明,HbWRKY1的过量表达可以明显提高转基因烟草对干旱胁迫的耐受能力。这说明WRKY基因与橡胶树抗旱能力之间存在一定的关系。  相似文献   

19.
Summary We transformed tomato (Lycopersicon esculentum L.) by using Agrobacterium rhizogenes containing two independent plasmids: the wild-type Ri-plasmid, and the vector plasmid, pARC8. The T-DNA of the vector plasmid contained a marker gene (Nos/Kan) encoding neomycin phosphotransferase which conferred resistance to kanamycin in transformed plant cells. Transgenic plants (R 0) with normal phenotype were regenerated from transformed organogenic calli by the punctured cotyledon transformation method. Southern blot analysis of the DNA from these transgenic plants showed that one or two copies of the vector plasmid T-DNA, but none of the Ri-plamid T-DNA, were integrated into the plant genome. Different transgenic plants derived from the same callus clone showed an identical DNA banding pattern, indicating the non-chimeric origin of these plants. We also transformed tomato by using A. tumefaciens strain LBA4404 containing a disarmed Ti-plasmid (pAL4404), and a vector plasmid (pARC8). Transgenic plants derived via A. tumefaciens transformation, like those via A. rhizogenes, contained one to two copies of the integrated vector T-DNA. The kanamycin resistance trait in the progeny (R 1) of most transgenic plants segregated at a ratio of 3:1, suggesting that the vector T-DNAs were integrated at a single site on a tomato chromosome. In some cases, the expression of the marker gene (Nos/Kan) seemed to be suppressed or lost in the progeny.  相似文献   

20.
Genetic transformation of an elite white poplar genotype (Populus alba L., cv. ‘Villafranca’) was performed with MAT vectors carrying the ipt and rol genes from Agrobacterium spp. as morphological markers. The effects associated with the use of different gene promoters and distinct in vitro regeneration protocols were evaluated. Poplar plantlets showing abnormal ipt and rol phenotypes were produced only in the presence of exogenous growth regulators. The occurrence of abnormal ipt and rol phenotypes allowed the visual selection of transformants. The ipt-type MAT vector pEXM2 was used to monitor the activity of the yeast site-specific recombination R/RS system in the transformed white poplar cells. Results from these experiments demonstrated that recombinase-mediated excision events occurred during the early stages of in vitro culture, thus causing the direct production of ipt marker-free transgenic plants with normal phenotype at an estimated frequency of 36.4%. Beside this unexpected finding, transgenic ipt-shooty plants were obtained at a frequency of 63.6% and normal shoots were subsequently recovered after a prolonged period of in vitro culture. Although the transformation efficiency observed in this study, using both ipt and nptII genes as selection markers, was similar to that previously reported with standard vectors carrying only the nptII gene, the easy identification of ipt transformants, the early recombinase-mediated excision events and finally the relatively short time period required to produce ipt marker-free transgenic plants support for the choice of MAT vectors as a reliable strategy for the future production of marker-free GM poplars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号