首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 391 毫秒
1.
During viral infection, constitutive proteasomes are largely replaced by immunoproteasomes, which display distinct cleavage specificities, resulting in different populations of potential CD8(+) T cell epitope peptides. Immunoproteasomes are believed to be important for the generation of many viral CD8(+) T cell epitopes and have been implicated in shaping the immunodominance hierarchies of CD8(+) T cell responses to influenza virus infection. However, it remains unclear whether these conclusions are generally applicable. In this study we investigated the CD8(+) T cell responses to lymphocytic choriomeningitis virus infection and DNA immunization in wild-type mice and in mice lacking the immunoproteasome subunits LMP2 or LMP7. Although the total number of virus-specific cells was lower in LMP2 knockout mice, consistent with their having lower numbers of naive cells before infection, the kinetics of virus clearance were similar in all three mouse strains, and LMP-deficient mice mounted strong primary and secondary lymphocytic choriomeningitis virus-specific CD8(+) T cell responses. Furthermore, the immunodominance hierarchy of the four investigated epitopes (nuclear protein 396 (NP(396)) > gp33 > gp276 > NP(205)) was well maintained. We observed a slight reduction in the NP(205)-specific response in LMP2-deficient mice, but this had no demonstrable biological consequence. DNA vaccination of LMP2- and LMP7-deficient mice induced CD8(+) T cell responses that were slightly lower than, although not significantly different from, those induced in wild-type mice. Taken together, our results challenge the notion that immunoproteasomes are generally needed for effective antiviral CD8(+) T cell responses and for the shaping of immunodominance hierarchies. We conclude that the immunoproteasome may affect T cell responses to only a limited number of viral epitopes, and we propose that its main biological function may lie elsewhere.  相似文献   

2.

Background

Albeit several studies pointed out the pivotal role that CD4+T cells have in Multiple Sclerosis, the CD8+ T cells involvement in the pathology is still in its early phases of investigation. Proteasome degradation is the key step in the production of MHC class I-restricted epitopes and therefore its activity could be an important element in the activation and regulation of autoreactive CD8+ T cells in Multiple Sclerosis.

Methodology/Principal Findings

Immunoproteasomes and PA28-αβ regulator are present in MS affected brain area and accumulated in plaques. They are expressed in cell types supposed to be involved in MS development such as neurons, endothelial cells, oligodendrocytes, macrophages/macroglia and lymphocytes. Furthermore, in a genetic study on 1262 Italian MS cases and 845 controls we observed that HLA-A*02+ female subjects carrying the immunoproteasome LMP2 codon 60HH variant have a reduced risk to develop MS. Accordingly, immunoproteasomes carrying the LMP2 60H allele produce in vitro a lower amount of the HLA-A*0201 restricted immunodominant epitope MBP111–119.

Conclusion/Significance

The immunoproteasome LMP2 60HH variant reduces the risk to develop MS amongst Italian HLA-A*02+ females. We propose that such an effect is mediated by the altered proteasome-dependent production of a specific MBP epitope presented on the MHC class I. Our observations thereby support the hypothesis of an involvement of immunoproteasome in the MS pathogenesis.  相似文献   

3.

Background and aims

Although Helicobacter pylori is recognized as an extracellular infection bacterium, it can lead to an increase in the number of CD8+ T cells after infection. At present, the characteristics of H. pylori antigen-specific CD8+ T cells and the epitope response have not been elucidated. This study was focused on putative protective antigen UreB to detect specific CD8+ T-cell responses in vitro and screen for predominant response epitopes.

Methods

The PBMCs collected from H. pylori-infected individuals were stimulated by UreB peptide pools in vitro to identify the immunodominant CD8+ T-cell epitopes. Furthermore, their HLA restriction characteristics were detected accordingly by NGS. Finally, the relationship between immunodominant responses and appearance of gastric symptoms after H. pylori infection was conducted.

Results

UreB-specific CD8+ T-cell responses were detected in H. pylori-infected individuals. Three of UreB dominant epitopes (A-2 (UreB443–451: GVKPNMIIK), B-4 (UreB420–428: SEYVGSVEV), and C-1 (UreB5–13: SRKEYVSMY)) were firstly identified and mainly presented by HLA-A*1101, HLA-B*4001 and HLA-C*0702 alleles, respectively. C-1 responses were mostly occurred in H. pylori-infected subjects without gastric symptoms and may alleviate the degree of gastric inflammation.

Conclusions

The UreB dominant epitope-specific CD8+ T-cell response was closely related to the gastric symptoms after H. pylori infection, and the C-1 (UreB5-13) dominant peptides may be protective epitopes.  相似文献   

4.

Background

Recently we and others have identified CD8 and CD4 T cell epitopes within the highly expressed M. tuberculosis protein TB10.4. This has enabled, for the first time, a comparative study of the dynamics and function of CD4 and CD8 T cells specific for epitopes within the same protein in various stages of TB infection.

Methods and Findings

We focused on T cells directed to two epitopes in TB10.4; the MHC class I restricted epitope TB10.4 3–11 (CD8/10.4 T cells) and the MHC class II restricted epitope TB10.4 74–88 (CD4/10.4 T cells). CD4/10.4 and CD8/10.4 T cells displayed marked differences in terms of expansion and contraction in a mouse TB model. CD4/10.4 T cells dominated in the early phase of infection whereas CD8/10.4 T cells were expanded after week 16 and reached 5–8 fold higher numbers in the late phase of infection. In the early phase of infection both CD4/10.4 and CD8/10.4 T cells were characterized by 20–25% polyfunctional cells (IL-2+, IFN-γ+, TNF-α+), but whereas the majority of CD4/10.4 T cells were maintained as polyfunctional T cells throughout infection, CD8/10.4 T cells differentiated almost exclusively into effector cells (IFN-γ+, TNF-α+). Both CD4/10.4 and CD8/10.4 T cells exhibited cytotoxicity in vivo in the early phase of infection, but whereas CD4/10.4 cell mediated cytotoxicity waned during the infection, CD8/10.4 T cells exhibited increasing cytotoxic potential throughout the infection.

Conclusions/Significance

Our results show that CD4 and CD8 T cells directed to epitopes in the same antigen differ both in their kinetics and functional characteristics throughout an infection with M. tuberculosis. In addition, the observed strong expansion of CD8 T cells in the late stages of infection could have implications for the development of post exposure vaccines against latent TB.  相似文献   

5.

Background

West Nile virus (WNV) is a growing threat to public health and a greater understanding of the immune response raised against WNV is important for the development of prophylactic and therapeutic strategies.

Methodology/Principal Findings

In a reverse-immunology approach, we used bioinformatics methods to predict WNV-specific CD8+ T cell epitopes and selected a set of peptides that constitutes maximum coverage of 20 fully-sequenced WNV strains. We then tested these putative epitopes for cellular reactivity in a cohort of WNV-infected patients. We identified 26 new CD8+ T cell epitopes, which we propose are restricted by 11 different HLA class I alleles. Aiming for optimal coverage of human populations, we suggest that 11 of these new WNV epitopes would be sufficient to cover from 48% to 93% of ethnic populations in various areas of the World.

Conclusions/Significance

The 26 identified CD8+ T cell epitopes contribute to our knowledge of the immune response against WNV infection and greatly extend the list of known WNV CD8+ T cell epitopes. A polytope incorporating these and other epitopes could possibly serve as the basis for a WNV vaccine.  相似文献   

6.

Background

Programmed Death-1 (PD-1) is an inhibitory member of the CD28 family of molecules expressed on CD8+ T cells in response to antigenic stimulation. To better understand the role of PD-1 in antiviral immunity we examined the expression of PD-1 on Epstein-Barr virus (EBV) epitope-specific CD8+ T cells during acute infectious mononucleosis (AIM) and convalescence.

Methodology/Principal Findings

Using flow cytometry, we observed higher frequencies of EBV-specific CD8+ T cells and higher intensity of PD-1 expression on EBV-specific CD8+ T cells during AIM than during convalescence. PD-1 expression during AIM directly correlated with viral load and with the subsequent degree of CD8+ T cell contraction in convalescence. Consistent differences in PD-1 expression were observed between CD8+ T cells with specificity for two different EBV lytic antigen epitopes. Similar differences were observed in the degree to which PD-1 was upregulated on these epitope-specific CD8+ T cells following peptide stimulation in vitro. EBV epitope-specific CD8+ T cell proliferative responses to peptide stimulation were diminished during AIM regardless of PD-1 expression and were unaffected by blocking PD-1 interactions with PD-L1. Significant variability in PD-1 expression was observed on EBV epitope-specific CD8+ T cell subsets defined by V-beta usage.

Conclusions/Significance

These observations suggest that PD-1 expression is not only dependent on the degree of antigen presentation, but also on undefined characteristics of the responding cell that segregate with epitope specificity and V-beta usage.  相似文献   

7.
Murine cytomegalovirus (MCMV) is an important animal model of human cytomegalovirus (HCMV), a β-Herpesvirus that infects the majority of the world's population and causes disease in neonates and immunocompromised adults. CD8(+) T cells are a major part of the immune response to MCMV and HCMV. Processing of peptides for presentation to CD8(+) T cells may be critically dependent on the immunoproteasome, expression of which is affected by MCMV. However, the overall importance of the immunoproteasome in the generation of immunodominant peptides from MCMV is not known. We therefore examined the role of the immunoproteasome in stimulation of CD8(+) T cell responses to MCMV - both conventional memory responses and those undergoing long-term expansion or "inflation". We infected LMP7(-/-) and C57BL/6 mice with MCMV or with newly-generated recombinant vaccinia viruses (rVVs) encoding the immunodominant MCMV protein M45 in either full-length or epitope-only minigene form. We analysed CD8(+) T cell responses using intracellular cytokine stain (ICS) and MHC Class I tetramer staining for a panel of MCMV-derived epitopes. We showed a critical role for immunoproteasome in MCMV affecting all epitopes studied. Interestingly we found that memory "inflating" epitopes demonstrate reduced immunoproteasome dependence compared to non-inflating epitopes. M45-specific responses induced by rVVs remain immunoproteasome-dependent. These results help to define a critical restriction point for CD8(+) T cell epitopes in natural cytomegalovirus (CMV) infection and potentially in vaccine strategies against this and other viruses.  相似文献   

8.

Background  

CD8+ NKT-like cells are naturally occurring but rare T cells that express both T cell and natural killer cell markers. These cells may play key roles in establishing tolerance to self-antigens; however, their mechanism of action and molecular profiles are poorly characterized due to their low frequencies. We developed an efficient in vitro protocol to produce CD8+ T cells that express natural killer cell markers (CD8+ NKT-like cells) and extensively characterized their functional and molecular phenotypes using a variety of techniques.  相似文献   

9.

Background

The attenuated Yellow fever (YF) 17D vaccine virus is one of the safest and most effective viral vaccines administered to humans, in which it elicits a polyvalent immune response. Herein, we used the YF 17D backbone to express a Trypanosoma cruzi CD8+ T cell epitope from the Amastigote Surface Protein 2 (ASP-2) to provide further evidence for the potential of this virus to express foreign epitopes. The TEWETGQI CD8+ T cell epitope was cloned and expressed based on two different genomic insertion sites: in the fg loop of the viral Envelope protein and the protease cleavage site between the NS2B and NS3. We investigated whether the site of expression had any influence on immunogenicity of this model epitope.

Results

Recombinant viruses replicated similarly to vaccine virus YF 17D in cell culture and remained genetically stable after several serial passages in Vero cells. Immunogenicity studies revealed that both recombinant viruses elicited neutralizing antibodies to the YF virus as well as generated an antigen-specific gamma interferon mediated T-cell response in immunized mice. The recombinant viruses displayed a more attenuated phenotype than the YF 17DD vaccine counterpart in mice. Vaccination of a mouse lineage highly susceptible to infection by T. cruzi with a homologous prime-boost regimen of recombinant YF viruses elicited TEWETGQI specific CD8+ T cells which might be correlated with a delay in mouse mortality after a challenge with a lethal dose of T. cruzi.

Conclusions

We conclude that the YF 17D platform is useful to express T. cruzi (Protozoan) antigens at different functional regions of its genome with minimal reduction of vector fitness. In addition, the model T. cruzi epitope expressed at different regions of the YF 17D genome elicited a similar T cell-based immune response, suggesting that both expression sites are useful. However, the epitope as such is not protective and it remains to be seen whether expression of larger domains of ASP-2, which include the TEWETGQI epitope, will elicit better T-CD8+ responses to the latter. It is likely that additional antigens and recombinant virus formulations will be necessary to generate a protective response.  相似文献   

10.

Background

It is generally accepted that CD8+ T cell responses play an important role in control of immunodeficiency virus replication. The association of HLA-B27 and -B57 with control of viremia supports this conclusion. However, specific correlates of viral control in individuals expressing these alleles have been difficult to define. We recently reported that transient in vivo CD8+ cell depletion in simian immunodeficiency virus (SIV)-infected elite controller (EC) macaques resulted in a brief period of viral recrudescence. SIV replication was rapidly controlled with the reappearance of CD8+ cells, implicating that these cells actively suppress viral replication in ECs.

Methods and Findings

Here we show that three ECs in that study made at least seven robust CD8+ T cell responses directed against novel epitopes in Vif, Rev, and Nef restricted by the MHC class I molecule Mamu-B*08. Two of these Mamu-B*08-positive animals subsequently lost control of SIV replication. Their breakthrough virus harbored substitutions in multiple Mamu-B*08-restricted epitopes. Indeed, we found evidence for selection pressure mediated by Mamu-B*08-restricted CD8+ T cells in all of the newly identified epitopes in a cohort of chronically infected macaques.

Conclusions

Together, our data suggest that Mamu-B*08-restricted CD8+ T cell responses effectively control replication of pathogenic SIVmac239. All seven regions encoding Mamu-B*08-restricted CD8+ T cell epitopes also exhibit amino acid replacements typically seen only in the presence of Mamu-B*08, suggesting that the variation we observe is indeed selected by CD8+ T cell responses. SIVmac239 infection of Indian rhesus macaques expressing Mamu-B*08 may therefore provide an animal model for understanding CD8+ T cell-mediated control of HIV replication in humans.  相似文献   

11.
NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8+ T cell epitope, NY-ESO-188–96 (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1157–165 epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-188–96 is much more efficiently cross-presented from the soluble form, than NY-ESO-1157–165. On the other hand, NY-ESO-1157–165 is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A26–35; whereas NY-ESO-188–96 was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-188–96 is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18+ melanoma patients. Surprisingly, all the detectable responses to NY-ESO-188–96 from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8+ T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed.  相似文献   

12.

Background

HIV-1 remains sequestered during antiretroviral therapy (ART) and can resume high-level replication upon cessation of ART or development of drug resistance. Reactivity of memory CD8+ T lymphocytes to HIV-1 could potentially inhibit this residual viral replication, but is largely muted by ART in relation to suppression of viral antigen burden. Dendritic cells (DC) are important for MHC class I processing and presentation of peptide epitopes to memory CD8+ T cells, and could potentially be targeted to activate memory CD8+ T cells to a broad array of HIV-1 epitopes during ART.

Principal Findings

We show for the first time that HIV-1 peptide-loaded, CD40L-matured DC from HIV-1 infected persons on ART induce IFN gamma production by CD8+ T cells specific for a much broader range and magnitude of Gag and Nef epitopes than do peptides without DC. The DC also reveal novel, MHC class I restricted, Gag and Nef epitopes that are able to induce polyfunctional T cells producing various combinations of IFN gamma, interleukin 2, tumor necrosis factor alpha, macrophage inhibitory protein 1 beta and the cytotoxic de-granulation molecule CD107a.

Significance

There is an underlying, broad antigenic spectrum of anti-HIV-1, memory CD8+ T cell reactivity in persons on ART that is revealed by DC. This supports the use of DC-based immunotherapy for HIV-1 infection.  相似文献   

13.

Background

Several arenaviruses cause severe hemorrhagic fever and aseptic meningitis in humans for which no licensed vaccines are available. A major obstacle for vaccine development is pathogen heterogeneity within the Arenaviridae family. Evidence in animal models and humans indicate that T cell and antibody-mediated immunity play important roles in controlling arenavirus infection and replication. Because CD4+ T cells are needed for optimal CD8+ T cell responses and to provide cognate help for B cells, knowledge of epitopes recognized by CD4+ T cells is critical to the development of an effective vaccine strategy against arenaviruses. Thus, the goal of the present study was to define and characterize CD4+ T cell responses from a broad repertoire of pathogenic arenaviruses (including lymphocytic choriomeningitis, Lassa, Guanarito, Junin, Machupo, Sabia, and Whitewater Arroyo viruses) and to provide determinants with the potential to be incorporated into a multivalent vaccine strategy.

Results

By inoculating HLA-DRB1*0101 transgenic mice with a panel of recombinant vaccinia viruses, each expressing a single arenavirus antigen, we identified 37 human HLA-DRB1*0101-restricted CD4+ T cell epitopes from the 7 antigenically distinct arenaviruses. We showed that the arenavirus-specific CD4+ T cell epitopes are capable of eliciting T cells with a propensity to provide help and protection through CD40L and polyfunctional cytokine expression. Importantly, we demonstrated that the set of identified CD4+ T cell epitopes provides broad, non-ethnically biased population coverage of all 7 arenavirus species targeted by our studies.

Conclusions

The identification of CD4+ T cell epitopes, with promiscuous binding properties, derived from 7 different arenavirus species will aid in the development of a T cell-based vaccine strategy with the potential to target a broad range of ethnicities within the general population and to protect against both Old and New World arenavirus infection.  相似文献   

14.

Background

CD8+ T cell responses are often detected at large magnitudes in HIV-infected subjects, and eliciting these responses is the central aim of many HIV-1 vaccine strategies. Population differences in CD8+ T cell epitope specificity will need to be understood if vaccines are to be effective in multiple geographic regions.

Methodology/Principal Findings

In a large Kenyan cohort, we compared responsive CD8+ T cell HIV-1 Env overlapping peptides (OLPs) to Best Defined Epitopes (BDEs), many of which have been defined in clade B infection. While the majority of BDEs (69%) were recognized in this population, nearly half of responsive OLPs (47%) did not contain described epitopes. Recognition frequencies of BDEs were inversely correlated to epitopic sequence differences between clade A1 and BDE (P = 0.019), and positively selected residues were more frequent in “new” OLPs (without BDEs). We assessed the impact of HLA and TAP binding on epitope recognition frequencies, focusing on predicted and actual epitopes in the HLA B7 supertype.

Conclusions/Significance

Although many previously described CD8 epitopes were recognized, several novel CD8 epitopes were defined in this population, implying that epitope mapping efforts have not been completely exhausted. Expansion of these studies will be critical to understand population differences in CD8 epitope recognition.  相似文献   

15.

Background

Hantaan virus (HTNV) infection in humans is a serious public health concern in Asia. A potent T cell activation peptide vaccine from HTNV structure protein represents a promising immunotherapy for disease control. However, the T cell epitopes of the HTNV restricted by the HLA alleles and the role of epitope-specific T cell response after HTNV infection remain largely unexplored.

Methodology/Principal Findings

Five well-conserved novel CD8+ T-cell epitopes of the HTNV nucleoprotein restricted by the most popular HLA alleles in Chinese Han population were defined with interferon-γ enzyme-linked immunospot assay in 37 patients infected with HTNV during hospitalization. Two epitopes aa129–aa137 and aa131–aa139 restricted by HLA-A2 and B35, respectively, were selected to evaluate the epitope-specific CD8+ T-cell response. HLA-peptide pentamer complex staining showed that the frequency of single epitope-specific CD8+ T cell could be detected in patients (95% confidence interval for aa129–aa137: 0.080%–0.208%; for aa131–aa139: 0.030%–0.094%). The frequency of epitope-specific pentamer+ CD8+ T-cell response was much higher in mild/moderate patients than in severe/critical ones at the acute stage of the disease. Moreover, the frequency of epitope-specific CD8+ T cells at acute stage was inversely associated with the peak level of serum creatinine and was positively associated with the nadir platelet counts during the hospitalization. The intracellular cytokine staining and the proliferation assay showed that the effective epitope-specific CD8+ T cells were characterized with the production of interferon-γ, expression of CD69 and the strong capacity of proliferation.

Conclusion/Significance

The novel HLA class I restricted HTNV nucleoprotein epitopes-specific CD8+ T-cell responses would be closely related with the progression and the severity of the disease, which could provide the first step toward effective peptide vaccine development against HTNV infection in humans.  相似文献   

16.

Background

Antigenicity of HIV-1 envelope proteins (Envs) of both lab-adapted and primary isolates expressed on the cell surface rarely match with in vitro neutralization of viruses, pseudo-typed with corresponding Envs. Often, both neutralizing and non-neutralizing antibodies bind to Envs expressed on the cell membrane. This could be due to the lack of efficient cleavage of Env expressed on the cell surface. Naturally occurring, efficiently cleaved Envs with appropriate antigenic properties are relatively rare. Given viral diversity it is essential to increase the pool of candidate Envs suitable for immunogen design. Previously, it has been reported that JRFL Env is the only clade B Env, which is efficiently cleaved on the cell surface and retains desirable antigenic properties. JRCSF is a clade B Env isolated from the same patient as JRFL. JRCSF Env has not been explored aggressively for designing immunogen as the binding characteristics of JRCSF Env to broadly neutralizing antibodies on the cell surface and its cleavage status are unknown.

Results

Although JRCSF preferentially binds to most of the other gp120-directed neutralizing antibodies and cleavage dependent antibody, PGT151 efficiently, it binds poorly to CD4-binding-site-directed (CD4-bs-directed) neutralizing antibodies on cell surface. Membrane bound form of modified JRCSF Env containing the N197D mutation binds to CD4-bs-directed neutralizing antibodies better than JRFL, without debilitating its ability to bind quaternary epitope-directed neutralizing antibodies or exposing the CD4i antibody epitopes. In comparison to JRFL (E168K), JRCSF Env binds more efficiently to PG9/PGT145 class of V1/V2-directed conformational antibodies. Biochemical, cell surface staining and gp120 shedding experiments suggest that JRCSF is efficiently cleaved on the cell surface.

Conclusions

Binding of JRCSF Env expressed on cell surface to the various HIV-1 Env-directed antibodies has not been reported earlier. Here, for the first time, we report that compared to JRFL, JRCSF displays epitopes for a larger number of broadly neutralizing antibodies and is also efficiently cleaved when expressed on the cell surface. Thus, considering the diversity of viral Envs and the discovery of conformation dependent glycan-directed antibodies in HIV-1 infected individuals, an innately cleaved JRCSF Env as present on the viral membrane and displaying those distinct epitopes may be an important candidate for immunogen design.
  相似文献   

17.

Background

Previously, we identified a set of HLA-A020.1-restricted trans-sialidase peptides as targets of CD8+ T cell responses in HLA-A0201+ individuals chronically infected by T. cruzi.

Methods and Findings

Herein, we report the identification of peptides encoded by the same trans-sialidase gene family that bind alleles representative of the 6 most common class I HLA-supertypes. Based on a combination of bioinformatic predictions and HLA-supertype considerations, a total of 1001 epitopes predicted to bind to HLA A01, A02, A03, A24, B7 and B44 supertypes was selected. Ninety-six supertype-binder epitopes encoded by multiple trans-sialidase genes were tested for the ability to stimulate a recall CD8+ T cell response in the peripheral blood from subjects with chronic T. cruzi infection regardless the HLA haplotype. An overall hierarchy of antigenicity was apparent, with the A02 supertype peptides being the most frequently recognized in the Chagas disease population followed by the A03 and the A24 supertype epitopes. CD8+ T cell responses to promiscuous epitopes revealed that the CD8+ T cell compartment specific for T. cruzi displays a functional profile with T cells secreting interferon-γ alone as the predominant pattern and very low prevalence of single IL-2-secreting or dual IFN-γ/IL-2 secreting T cells denoting a lack of polyfunctional cytokine responses in chronic T. cruzi infection.

Conclusions

This study identifies a set of T. cruzi peptides that should prove useful for monitoring immune competence and changes in infection and disease status in individuals with chronic Chagas disease.  相似文献   

18.

Background

The requirements for priming of HIV-specific T cell responses initially seen in infected individuals remain to be defined. Activation of T cell responses in lymph nodes requires cell-cell contact between T cells and DCs, which can give concurrent activation of T cells and HIV transmission.

Methodology

The study aim was to establish whether DCs pulsed with HIV-1 could prime HIV-specific T cell responses and to characterize these responses. Both infectious and aldrithiol-2 inactivated noninfectious HIV-1 were compared to establish efficiencies in priming and the type of responses elicited.

Findings

Our findings show that both infectious and inactivated HIV-1 pulsed DCs can prime HIV-specific responses from naïve T cells. Responses included several CD4+ and CD8+ T cell epitopes shown to be recognized in vivo by acutely and chronically infected individuals and some CD4+ T cell epitopes not identified previously. Follow up studies of acute and recent HIV infected samples revealed that these latter epitopes are among the earliest recognized in vivo, but the responses are lost rapidly, presumably through activation-induced general CD4+ T cell depletion which renders the newly activated HIV-specific CD4+ T cells prime targets for elimination.

Conclusion

Our studies highlight the ability of DCs to efficiently prime naïve T cells and induce a broad repertoire of HIV-specific responses and also provide valuable insights to the pathogenesis of HIV-1 infection in vivo.  相似文献   

19.

Background

Urease subunit B (UreB), a conserved and key virulence factor of Helicobacter pylori (H. pylori), can induce the host CD4+ T cell immune responses to provide protection, but less is known regarding CD8+ T cell responses. The characteristics of H. pylori-specific CD8+ T cell responses and the mechanism underlying antigen processing and presentation pathways remain unclear. This study was focus on protective antigen recombinant UreB (rUreb) to detect specific CD8+ T cell responses in vitro and elucidate the mechanism of UreB antigen processing and presentation.

Methods

The peripheral blood mononuclear cells (PBMCs) collected from H. pylori-infected individuals were stimulated with rUreB in vitro to detect specific CD8+ T cell responses after co-culture with rUreB-pulsed autologous hMDCs. Through blocking assay, we investigated the potential pathway of UreB antigen processing and presentation via the cytosolic pathway or vacuolar pathway. The cytokines production of UreB specific CD8+ T cell were evaluated as well.

Results

We demonstrated UreB can induce specific CD8+ T cell immune responses in H. pylori infected individuals. Importantly, we characterized that UreB were mainly processed by proteasome instead of lysosomal proteases and presented through cytosolic pathway of cross-presentation, which requires endoplasmic reticulum–Golgi transport and newly synthesized MHC-I molecules, to induce functional-specific CD8+ T cell (IFN-γ + TNF-α + Grz A+ Grz B+) responses.

Conclusions

These results suggest that H. pylori UreB induces specific CD8+ T cell responses through cytosolic pathway of cross-presentation in infected individuals.  相似文献   

20.

Background  

CD36 is a membrane glycoprotein involved in a variety of cellular processes such as lipid transport, immune regulation, hemostasis, adhesion, angiogenesis and atherosclerosis. It is expressed in many tissues and cell types, with a tissue specific expression pattern that is a result of a complex regulation for which the molecular mechanisms are not yet fully understood. There are several alternative mRNA isoforms described for the gene. We have investigated the expression patterns of five alternative first exons of the CD36 gene in several human tissues and cell types, to better understand the molecular details behind its regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号