首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tn5 Transposase with an Altered Specificity for Transposon Ends   总被引:6,自引:0,他引:6       下载免费PDF全文
Tn5 is a composite bacterial transposon that encodes a protein, transposase (Tnp), required for movement of the transposon. The initial step in the transposition pathway involves specific binding of Tnp to 19-bp end recognition sequences. Tn5 contains two different specific end sequences, termed outside end (OE) and inside end (IE). In Escherichia coli, IE is methylated by Dam methylase (IE(ME)). This methylation greatly inhibits recognition by Tnp and greatly reduces the ability of transposase to facilitate movement of IE defined transposons. Through use of a combinatorial random mutagenesis technique (DNA shuffling), we have isolated an IE(ME)-specific hyperactive form of Tnp, Tnp sC7v.2.0, that is able to promote high levels of transposition of IE(ME) defined transposons in vivo and in vitro while functioning at wild-type levels with OE transposons. This protein contains a critical glutamate-to-valine mutation at amino acid 58 that is responsible for this change in end specificity.  相似文献   

2.
Transposases mediate transposition first by binding specific DNA end sequences that define a transposable element and then by organizing protein and DNA into a highly structured and stable nucleoprotein 'synaptic' complex. Synaptic complex assembly is a central checkpoint in many transposition mechanisms. The Tn5 synaptic complex contains two Tn5 transposase subunits and two Tn5 transposon end sequences, exhibits extensive protein-end sequence DNA contacts and is the node of a DNA loop. Using single-molecule and bulk biochemical approaches, we found that Tn5 transposase assembles a stable nucleoprotein complex in the absence of Tn5 transposon end sequences. Surprisingly, this end sequence-independent complex has structural similarities to the synaptic complex. This complex is the node of a DNA loop; transposase dimerization and DNA specificity mutants affect its assembly; and it likely has the same number of proteins and DNA molecules as the synaptic complex. Furthermore, our results indicate that Tn5 transposase preferentially binds and loops a subset of non-Tn5 end sequences. Assembly of end sequence-independent nucleoprotein complexes likely plays a role in the in vivo downregulation of transposition and the cis-transposition bias of many bacterial transposases.  相似文献   

3.
Hairpin formation in Tn5 transposition   总被引:11,自引:0,他引:11  
The initial chemical steps in Tn5 transposition result in blunt end cleavage of the transposon from the donor DNA. We demonstrate that this cleavage occurs via a hairpin intermediate. The first step is a 3' hydrolytic nick by transposase. The free 3'OH then attacks the phosphodiester bond on the opposite strand, forming a hairpin at the transposon end. In addition to forming precise hairpins, Tn5 transposase can form imprecise hairpins. This is the first example of imprecise hairpin formation on transposon end DNA. To undergo strand transfer, the hairpin must to be resolved by a transposase-catalyzed hydrolytic cleavage. We show that both precise and imprecise hairpins are opened by transposase. A transposition mechanism utilizing a hairpin intermediate allows a single transposase active site to cleave both 3' and 5' strands without massive protein/DNA rearrangements.  相似文献   

4.
Intramolecular transposition by a synthetic IS50 (Tn5) derivative.   总被引:6,自引:3,他引:3       下载免费PDF全文
We report the formation of deletions and inversions by intramolecular transposition of Tn5-derived mobile elements. The synthetic transposons used contained the IS50 O and I end segments and the transposase gene, a contraselectable gene encoding sucrose sensitivity (sacB), antibiotic resistance genes, and a plasmid replication origin. Both deletions and inversions were associated with loss of a 300-bp segment that is designated the vector because it is outside of the transposon. Deletions were severalfold more frequent than inversions, perhaps reflecting constraints on DNA twisting or abortive transposition. Restriction and DNA sequence analyses showed that both types of rearrangements extended from one transposon end to many different sites in target DNA. In the case of inversions, transposition generated 9-bp direct repeats of target sequences.  相似文献   

5.
Steiniger M  Metzler J  Reznikoff WS 《Biochemistry》2006,45(51):15552-15562
X-ray cocrystal structures of Tn5 transposase (Tnp) bound to its 19 base pair (bp) recognition end sequence (ES) reveal contacts between a beta-loop (amino acids 240-260) and positions 3, 4, 5, and 6 of the ES. Here, we show that mutations of residues in this loop affect both in vivo and in vitro transposition. Most mutations are detrimental, whereas some mutations at position 242 cause hyperactivity. More specifically, mutations to the beta-loop affect every individual step of transposition tested. Mutants performing in vivo and in vitro transposition less efficiently also form fewer synaptic complexes, whereas hyperactive Tnps form more synaptic complexes. Surprisingly, two hypoactive mutations, K244R and R253L, also affect the cleavage steps of transposition with a much more dramatic effect on the second double end break (DEB) complex formation step, indicating that the beta-loop likely plays an important roll in positioning the substrate DNA within the catalytic site. Finally, all mutants tested decrease efficiency of the final transposition step, strand transfer. A disparity in cleavage rate constants in vitro for mutants with changes to the proline at position 242 on transposons flanked by ESs differing in the orientation of the A-T base pair at position 4 allows us to postulate that P242 contacts the position 4 nucleotide pair. On the basis of these data, we propose a sequential model for end cleavage in Tn5 transposition in which the uncleaved PEC is not symmetrical, and conformational changes are necessary between the first and second cleavage events and also for the final strand transfer step of transposition.  相似文献   

6.
Dissecting Tn5 transposition using HIV-1 integrase diketoacid inhibitors   总被引:1,自引:0,他引:1  
Czyz A  Stillmock KA  Hazuda DJ  Reznikoff WS 《Biochemistry》2007,46(38):10776-10789
Diketoacid (DKA) compounds have been shown to inhibit HIV-1 integrase by a mechanism that involves sequestration of the active site metals. Because HIV-1 integrase and Tn5 transposase have similar active site architectures and catalytic mechanisms, we investigated whether DKA analogues would inhibit Tn5 transposase activity and provide a model system to explore the mechanisms of action of these inhibitors. A screen of several hundred DKA analogues identified several with activity against Tn5 Tnp. Six DKA inhibitors used in this study manifested a variety of effects on different transposition steps suggesting that different analogues may have different binding contacts with transposase. All DKA compounds inhibited paired end complex (PEC) formation in which the nucleoprotein complex required for catalysis is assembled. Dissociation of PECs by some DKA compounds indicates that these inhibitors can decrease PEC stability. Four DKA compounds inhibited the two cleavage steps releasing transposon DNA from flanking DNA, and one of these four compounds preferentially inhibited the second cleavage step. The differential effect of this inhibitor on the second cleavage event indicates that cleavage of the two transposon-donor DNA boundaries is a sequential process requiring a conformational change. The requirement for a conformational change between cleavage events was also demonstrated by the inability of transposase to perform second cleavage at 25 degrees C. Finally, all six compounds inhibit strand transfer, the final step of Tn5 transposition. Two of the compounds that inhibited strand transfer have no effect on DNA cleavage. The strand transfer inhibition properties of various DKA compounds was sensitive to the structure of the 5'-non-transferred strand, suggesting that these compounds bind in or near the transposase active site. Other results that probe compound binding sites include the effects of active site mutations and donor DNA on DKA compound inhibition activities. Thus, DKA inhibitors will provide an important set of tools to investigate the mechanism of action of transposases and integrases.  相似文献   

7.
The inverted repeat (IR) sequences delimiting the left and right ends of many naturally active mariner DNA transposons are non-identical and have different affinities for their transposase. We have compared the preferences of two active mariner transposases, Mos1 and Mboumar-9, for their imperfect transposon IRs in each step of transposition: DNA binding, DNA cleavage, and DNA strand transfer. A 3.1 Å resolution crystal structure of the Mos1 paired-end complex containing the pre-cleaved left IR sequences reveals the molecular basis for the reduced affinity of the Mos1 transposase DNA-binding domain for the left IR as compared with the right IR. For both Mos1 and Mboumar-9, in vitro DNA transposition is most efficient when the preferred IR sequence is present at both transposon ends. We find that this is due to the higher efficiency of cleavage and strand transfer of the preferred transposon end. We show that the efficiency of Mboumar-9 transposition is improved almost 4-fold by changing the 3′ base of the preferred Mboumar-9 IR from guanine to adenine. This preference for adenine at the reactive 3′ end for both Mos1 and Mboumar-9 may be a general feature of mariner transposition.  相似文献   

8.
Tn5 is an excellent model system for understanding the molecular basis of DNA-mediated transposition. Mechanistic information has come from genetic and biochemical investigations of the transposase and its interactions with the recognition DNA sequences at the ends of the transposon. More recently, molecular structure analyses of catalytically active transposase; transposon DNA complexes have provided us with unprecedented insights into this transposition system. Transposase initiates transposition by forming a dimeric transposase, transposon DNA complex. In the context of this complex, the transposase then catalyses four phosphoryl transfer reactions (DNA nicking, DNA hairpin formation, hairpin resolution and strand transfer into target DNA) resulting in the integration of the transposon into its new DNA site. The studies that elucidated these steps also provided important insights into the integration of retroviral genomes into host DNA and the immune system V(D)J joining process. This review will describe the structures and steps involved in Tn5 transposition and point out a biologically important although surprising characteristic of the wild-type Tn5 transposase. Transposase is a very inactive protein. An inactive transposase protein ensures the survival of the host and thus the survival of Tn5.  相似文献   

9.
DNA transposases facilitate genome rearrangements by moving DNA transposons around and between genomes by a cut-and-paste mechanism. DNA transposition proceeds in an ordered series of nucleoprotein complexes that coordinate pairing and cleavage of the transposon ends and integration of the cleaved ends at a new genomic site. Transposition is initiated by transposase recognition of the inverted repeat sequences marking each transposon end. Using a combination of solution scattering and biochemical techniques, we have determined the solution conformations and stoichiometries of DNA-free Mos1 transposase and of the transposase bound to a single transposon end. We show that Mos1 transposase is an elongated homodimer in the absence of DNA and that the N-terminal 55 residues, containing the first helix-turn-helix motif, are required for dimerization. This arrangement is remarkably different from the compact, crossed architecture of the dimer in the Mos1 paired-end complex (PEC). The transposase remains elongated when bound to a single-transposon end in a pre-cleavage complex, and the DNA is bound predominantly to one transposase monomer. We propose that a conformational change in the single-end complex, involving rotation of one half of the transposase along with binding of a second transposon end, could facilitate PEC assembly.  相似文献   

10.
Effect of dam methylation on Tn5 transposition   总被引:27,自引:0,他引:27  
  相似文献   

11.
Characterization of a Tn5 pre-cleavage synaptic complex   总被引:9,自引:0,他引:9  
Protein catalyzed DNA rearrangements typically require assembly of complex nucleoprotein structures. In transposition and integration reactions, these structures, termed synaptic complexes, are mandatory for catalysis. We characterize the Tn5 pre-cleavage synaptic complex, the simplest transposition complex described to date. We identified this complex by gel retardation assay using short, linear fragments and have shown that it contains a dimer of transposase, two DNA molecules, and is competent for DNA cleavage in the presence of Mg(2+). We also used hydroxyl radical footprinting and interference techniques to delineate the protein-DNA contacts made in the Tn5 synaptic and monomer complexes. All positions (except position 1) of the end sequence are contacted by transposase in the synaptic complex. We have determined that positions 2-5 of the end sequence are specifically required for synaptic complex formation as they are not required for monomer complex formation. In addition, in the synaptic complex, there is a strong, local distortion centered around position 1 which likely facilitates cleavage.  相似文献   

12.
Binding of the Tn3 transposase to the inverted repeats of Tn3   总被引:4,自引:0,他引:4  
The transposase protein and the inverted repeat sequences of Tn3 are both essential for Tn3 cointegrate formation and transposition. We have developed two assays to detect site-specific binding of transposase to the inverted repeats: (1) a nitrocellulose filter binding assay in which transposase preferentially retains DNA fragments containing inverted repeat sequences, and (2) a DNase 1 protection assay in which transposase prevents digestion of the inverted repeats by DNase 1. Both assays show that transposase binds directly to linear, duplex DNA containing the inverted repeats. The right inverted repeat of Tn3 binds slightly more strongly than the left one. Site-specific binding requires magnesium but does not require a high energy cofactor.  相似文献   

13.
Junction sequences generated by ''one-ended transposition''.   总被引:7,自引:1,他引:6       下载免费PDF全文
In the presence of the cognate transposase, plasmids containing a single inverted repeat (IR) sequence of Tn21 or of Tn1721 can fuse efficiently with other plasmids ('one-ended transposition'). The junctions across the sequences of donor and recipient DNA in recombinants generated by this process have been determined. These show that the segment of donor DNA starts precisely at the IR sequence (it is variable at the other end), and is flanked by a direct repeat of host DNA (usually 5bp) that was present only once in the original host sequence. These are characteristics of recombinants generated by transposition of Tn21 and Tn1721 themselves, suggesting that the mechanism of one-ended transposition is very similar to that of the corresponding entire elements.  相似文献   

14.
A study was made of the transposition of the mercury resistance transposon Tn5041 which, together with the closely related toluene degradation transposon Tn4651, forms a separate group in the Tn3 family. Transposition of Tn5041 was host-dependent: the element transposed in its original host Pseudomonas sp. KHP41 but not in P. aeruginosa PAO-R and Escherichia coli K12. Transposition of Tn5041 in these strains proved to be complemented by the transposase gene (tnpA) of Tn4651. The gene region determining the host dependence of Tn5041 transposition was localized with the use of a series of hybrid (Tn5041 x Tn4651) tnpA genes. Its location in the 5'-terminal one-third of the transposase gene is consistent with the data that this region is involved in the formation of the transposition complex in transposons of the Tn3 family. As in other transposons of this family, transposition of Tn5041 occurred via cointegrate formation, suggesting its replicative mechanism. However, neither of the putative resolution proteins encoded by Tn5041 resolved the cointegrates formed during transposition or an artificial cointegrate in E. coli K12. Similar data were obtained with the mercury resistance transposons isolated from environmental Pseudomonas strains and closely related to Tn5041 (Tn5041 subgroup).  相似文献   

15.
Transposons have contributed protein coding sequences to a unexpectedly large number of human genes. Except for the V(D)J recombinase and telomerase, all remain of unknown function. Here we investigate the activity of the human SETMAR protein, a highly expressed fusion between a histone H3 methylase and a mariner family transposase. Although SETMAR has demonstrated methylase activity and a DNA repair phenotype, its mode of action and the role of the transposase domain remain obscure. As a starting point to address this problem, we have dissected the activity of the transposase domain in the context of the full-length protein and the isolated transposase domain. Complete transposition of an engineered Hsmar1 transposon by the transposase domain was detected, although the extent of the reaction was limited by a severe defect for cleavage at the 3' ends of the element. Despite this problem, SETMAR retains robust activity for the other stages of the Hsmar1 transposition reaction, namely, site-specific DNA binding to the transposon ends, assembly of a paired-ends complex, cleavage of the 5' end of the element in Mn(2+), and integration at a TA dinucleotide target site. SETMAR is unlikely to catalyze transposition in the human genome, although the nicking activity may have a role in the DNA repair phenotype. The key activity for the mariner domain is therefore the robust DNA-binding and looping activity which has a high potential for targeting the histone methylase domain to the many thousands of specific binding sites in the human genome provided by copies of the Hsmar1 transposon.  相似文献   

16.
Retroviral integration, like all forms of DNA transposition, proceeds through a series of DNA cutting and joining reactions. During transposition, the 3' ends of linear transposon or donor DNA are joined to the 5' phosphates of a double-stranded cut in target DNA. Single-end transposition must be avoided in vivo because such aberrant DNA products would be unstable and the transposon would therefore risk being lost from the cell. To avoid suicidal single-end integration, transposons link the activity of their transposase protein to the combined functionalities of both donor DNA ends. Although previous work suggested that this critical coupling between transposase activity and DNA ends occurred before the initial hydrolysis step of retroviral integration, work in the related Tn10 and V(D)J recombination systems had shown that end coupling regulated transposase activity after the initial hydrolysis step of DNA transposition. Here, we show that integrase efficiently hydrolyzed just the wild-type end of two different single-end mutants of human immunodeficiency virus type 1 in vivo, which, in contrast to previous results, proves that two functional DNA ends are not required to activate integrase's initial hydrolysis activity. Furthermore, despite containing bound protein at their processed DNA ends, these mutant viruses did not efficiently integrate their singly cleaved wild-type end into target DNA in vitro. By comparing our results to those of related DNA recombination systems, we propose the universal model that end coupling regulates transposase activity after the first chemical step of DNA transposition.  相似文献   

17.
Recent studies have indicated that the evolutionarily common catabolic gene clusters are loaded on structurally diverse toluene-catabolic (TOL) plasmids and their residing transposons. To elucidate the mechanisms supporting the diversification of catabolic plasmids and transposons, we determined here the complete 107,929 bp sequence of pWW53, a TOL plasmid from Pseudomonas putida MT53. pWW53 was found to belong to the IncP-7 incompatibility group that play important roles in the catabolism of several xenobiotics. pWW53 carried two distinct transposase-resolvase gene clusters (tnpAR modules), five short terminal inverted repeats (IRs), and three site-specific resolution (res) sites that are all typical of class II transposons. This organization of pWW53 suggested the four possible transposable regions, Tn4657 to Tn4660. The largest 86 kb region (Tn4657) spanned the three other regions, and Tn4657 and Tn4660 (62 kb) covered all of the 36 xyl genes for toluene catabolism. Our subsequent transposition experiments clarified that the three transposons, Tn4657 to Tn4659, indeed exhibit their transposability, and that pWW53 also generated another 37 kb toluene-catabolic transposon, Tn4656, which carried the two separated and inversely oriented segments of pWW53: the tnpRA-IR module of Tn4658 and a part of xyl gene clusters on Tn4657. The Tn4658 transposase was able to mediate the transposition of Tn4658, Tn4657, and Tn4656, while the Tn4659 transposase catalyzed only the transposition of Tn4659. Tn4656 was formed by the Tn4658 resolvase-mediated site-specific inversion between the two inversely oriented res sites on pWW53. These findings and comparison with other catabolic plasmids clearly indicate multiple copies of transposition-related genes and sites on one plasmid and their recombination activities contribute greatly to the diversification of plasmid structures as well as wide dissemination of the evolutionary common gene clusters in various plasmids.  相似文献   

18.
Two domains in the terminal inverted-repeat sequence of transposon Tn3   总被引:4,自引:0,他引:4  
H Ichikawa  K Ikeda  J Amemura  E Ohtsubo 《Gene》1990,86(1):11-17
Tn3 and related transposons have terminal inverted repeats (IR) of about 38 bp that are needed as sites for transposition. We made mini-Tn3 derivatives which had a wild-type IR of Tn3 at one end and either the divergent IR of the Tn3-related transposon, gamma delta or IS101, or a mutant IR of Tn3 at the other end. We then examined both in vivo transposition (cointegration between transposition donor and target molecules) of these mini-Tn3 elements and in vitro binding of Tn3-encoded transposase to their IRs. None of the elements with an IR of gamma delta or IS101 mediated cointegration efficiently. This was due to inefficient binding of transposase to these IR. Most mutant IR also interfered with cointegration, even though transposase bound to some mutant IR as efficiently as it did to wild type. This permitted the Tn3 IR sequence to be divided into two domains, named A and B, with respect to transposase binding. Domain B, at positions 13-38, was involved in transposase binding, whereas domain A, at positions 1-10, was not. The A domain may contain the sequence recognized by some other (e.g., host) factor(s) to precede the actual cointegration event.  相似文献   

19.
The organization of the outside end of transposon Tn5.   总被引:3,自引:0,他引:3       下载免费PDF全文
The end sequences of the IS50 insertion sequence are known as the outside end (OE) and inside end. These complex ends are related but nonidentical 19-bp sequences that serve as substrates for the activity of the Tn5 transposase. Besides providing the binding site of the transposase, the end sequences of a transposon contain additional types of information necessary for transposition. These additional properties include but are not limited to host protein interaction sites and sites that program synapsis and cleavage events. In order to delineate the properties of the IS50 ends,the base pairs involved in the transposase binding site have been defined. This has been approached through performing a variety of in vitro analyses: a ++hydroxyl radical missing-nucleoside interference experiment, a dimethyl sulfate interference experiment, and an examination of the relative binding affinities of single-site end substitutions. These approaches have led to the conclusion that the transposase binds to two nonsymmetrical regions of the OE, including positions 6 to 9 and 13 to 19. Proper binding occurs along one face of the helix, over two major and minor grooves, and appears to result in a significant bending of the DNA centered approximately 3 bp from the donor DNA-OE junction.  相似文献   

20.
Transposition (the movement of discrete segments of DNA, resulting in rearrangement of genomic DNA) initiates when transposase forms a dimeric DNA-protein synaptic complex with transposon DNA end sequences. The synaptic complex is a prerequisite for catalytic reactions that occur during the transposition process. The transposase-DNA interactions involved in the synaptic complex have been of great interest. Here we undertook a study to verify the protein-DNA interactions that lead to synapsis in the Tn5 system. Specifically, we studied (i) Arg342, Glu344, and Asn348 and (ii) Ser438, Lys439, and Ser445, which, based on the previously published cocrystal structure of Tn5 transposase bound to a precleaved transposon end sequence, make cis and trans contacts with transposon end sequence DNA, respectively. By using genetic and biochemical assays, we showed that in all cases except one, each of these residues plays an important role in synaptic complex formation, as predicted by the cocrystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号