首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
Nonstructural protein 5A (NS5A) is a membrane-associated essential component of the hepatitis C virus (HCV) replication complex. An N-terminal amphipathic alpha helix mediates in-plane membrane association of HCV NS5A and at the same time is likely involved in specific protein-protein interactions required for the assembly of a functional replication complex. The aim of this study was to identify the determinants for membrane association of NS5A from the related GB viruses and pestiviruses. Although primary amino acid sequences differed considerably, putative membrane anchor domains with amphipathic features were predicted in the N-terminal domains of NS5A proteins from these viruses. Confocal laser scanning microscopy, as well as membrane flotation analyses, demonstrated that NS5As from GB virus B (GBV-B), GBV-C, and bovine viral diarrhea virus, the prototype pestivirus, display membrane association characteristics very similar to those of HCV NS5A. The N-terminal 27 to 33 amino acid residues of these NS5A proteins were sufficient for membrane association. Circular dichroism analyses confirmed the capacity of these segments to fold into alpha helices upon association with lipid-like molecules. Despite structural conservation, only very limited exchanges with sequences from related viruses were tolerated in the context of functional HCV RNA replication, suggesting virus-specific interactions of these segments. In conclusion, membrane association of NS5A by an N-terminal amphipathic alpha helix is a feature shared by HCV and related members of the family Flaviviridae. This observation points to conserved roles of the N-terminal amphipathic alpha helices of NS5A in replication complex formation.  相似文献   

2.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), is believed to form a membrane-associated RNA replication complex together with other nonstructural proteins and as yet unidentified host components. However, the determinants for membrane association of this essential viral enzyme have not been defined. By double label immunofluorescence analyses, NS5B was found in the endoplasmic reticulum (ER) or an ER-like modified compartment both when expressed alone or in the context of the entire HCV polyprotein. The carboxyl-terminal 21 amino acid residues were necessary and sufficient to target NS5B or a heterologous protein to the cytosolic side of the ER membrane. This hydrophobic domain is highly conserved among 269 HCV isolates analyzed and predicted to form a transmembrane alpha-helix. Association of NS5B with the ER membrane occurred by a posttranslational mechanism that was ATP-independent. These features define the HCV RdRp as a new member of the tail-anchored protein family, a class of integral membrane proteins that are membrane-targeted posttranslationally via a carboxyl-terminal insertion sequence. Formation of the HCV replication complex, therefore, involves specific determinants for membrane association that represent potential targets for antiviral intervention.  相似文献   

3.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a membrane-associated, essential component of the viral replication complex. Here, we report the three-dimensional structure of the membrane anchor domain of NS5A as determined by NMR spectroscopy. An alpha-helix extending from amino acid residue 5 to 25 was observed in the presence of different membrane mimetic media. This helix exhibited a hydrophobic, Trprich side embedded in detergent micelles, while the polar, charged side was exposed to the solvent. Thus, the NS5A membrane anchor domain forms an in-plane amphipathic alpha-helix embedded in the cytosolic leaflet of the membrane bilayer. Interestingly, mutations affecting the positioning of fully conserved residues located at the cytosolic surface of the helix impaired HCV RNA replication without interfering with the membrane association of NS5A. In conclusion, the NS5A membrane anchor domain constitutes a unique platform that is likely involved in specific interactions essential for the assembly of the HCV replication complex and that may represent a novel target for antiviral intervention.  相似文献   

4.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins.  相似文献   

5.
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a monotopic membrane protein anchored to the membrane by an N-terminal in-plane amphipathic alpha-helix. This membrane anchor is essential for the assembly of a functional viral replication complex. Although amino acid sequences differ considerably, putative membrane anchors with amphipathic features were predicted in NS5A from related Flaviviridae family members, in particular bovine viral diarrhea virus (BVDV), the prototype representative of the genus Pestivirus. We report here the NMR structure of the membrane anchor 1-28 of NS5A from BVDV in the presence of different membrane mimetic media. This anchor includes a long amphipathic alpha-helix of 21 residues interacting in-plane with the membrane interface and including a putative flexible region. Molecular dynamic simulation at a water-dodecane interface used to mimic the surface separating a lipid bilayer and an aqueous medium demonstrated the stability of the helix orientation and the location at the hydrophobic-hydrophilic interface. The flexible region of the helix appears to be required to allow the most favorable interaction of hydrophobic and hydrophilic side chain residues with their respective environment at the membrane interface. Despite the lack of amino acid sequence similarity, this amphipathic helix shares common structural features with that of the HCV counterpart, including a stable, hydrophobic N-terminal segment separated from the more hydrophilic C-terminal segment by a local, flexible region. These structural conservations point toward conserved roles of the N-terminal in-plane membrane anchors of NS5A in replication complex formation of HCV, BVDV, and other related viruses.  相似文献   

6.
Lee KJ  Choi J  Ou JH  Lai MM 《Journal of virology》2004,78(7):3797-3802
Hepatitis C virus (HCV) RNA replication is dependent on the enzymatic activities of the viral RNA-dependent RNA polymerase NS5B, which is a membrane-anchored protein. Recombinant NS5B lacking the C-terminal transmembrane domain (21 amino acids) is enzymatically active. To address the role of this domain in HCV replication in vivo, we introduced a series of mutations into the NS5B of an HCV subgenomic replicon and examined the replication capabilities of the resultant mutants by a colony formation assay. Replicons lacking the transmembrane domain did not yield any colonies. Furthermore, when Huh-7 cells harboring the HCV subgenomic replicon were treated with a synthetic peptide consisting of the NS5B transmembrane domain fused to the antennapedia peptide, the membrane association of NS5B was completely disrupted. Correspondingly, the HCV RNA titer was reduced by approximately 50%. A scrambled peptide used as a control did not have any effects. These findings suggest that the membrane association of NS5B facilitates HCV RNA synthesis. However, a related transmembrane domain derived from bovine viral diarrhea virus could not replace the HCV NS5B transmembrane segment. This finding suggests that the C-terminal 21 amino acids not only have a membrane-anchoring function but also may perform additional functions for RNA synthesis in vivo.  相似文献   

7.
Hepatitis C virus (HCV) is a single-stranded RNA virus that replicates on endoplasmic reticulum-derived membranes. HCV particle assembly is dependent on the association of core protein with cellular lipid droplets (LDs). However, it remains uncertain whether HCV assembly occurs at the LD membrane itself or at closely associated ER membranes. Furthermore, it is not known how the HCV replication complex and progeny genomes physically associate with the presumed sites of virion assembly at or near LDs. Using an unbiased proteomic strategy, we have found that Rab18 interacts with the HCV nonstructural protein NS5A. Rab18 associates with LDs and is believed to promote physical interaction between LDs and ER membranes. Active (GTP-bound) forms of Rab18 bind more strongly to NS5A than a constitutively GDP-bound mutant. NS5A colocalizes with Rab18-positive LDs in HCV-infected cells, and Rab18 appears to promote the physical association of NS5A and other replicase components with LDs. Modulation of Rab18 affects genome replication and possibly also the production of infectious virions. Our results support a model in which specific interactions between viral and cellular proteins may promote the physical interaction between membranous HCV replication foci and lipid droplets.  相似文献   

8.
Gao L  Aizaki H  He JW  Lai MM 《Journal of virology》2004,78(7):3480-3488
The lipid raft membrane has been shown to be the site of hepatitis C virus (HCV) RNA replication. The mechanism of formation of the replication complex is not clear. We show here that the formation of the HCV RNA replication complex on lipid raft (detergent-resistant membranes) requires interactions among the HCV nonstructural (NS) proteins and may be initiated by the precursor of NS4B, which has the intrinsic property of anchoring to lipid raft membrane. In hepatocyte cell lines containing an HCV RNA replicon, most of the other NS proteins, including NS5A, NS5B, and NS3, were also localized to the detergent-resistant membranes. However, when individually expressed, only NS4B was associated exclusively with lipid raft. In contrast, NS5B and NS3 were localized to detergent-sensitive membrane and cytosolic fractions, respectively. NS5A was localized to both detergent-sensitive and -resistant membrane fractions. Furthermore, we show that a cellular vesicle membrane transport protein named hVAP-33 (the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein), which binds to both NS5A and NS5B, plays a critical role in the formation of HCV replication complex. The hVAP-33 protein is partially associated with the detergent-resistant membrane fraction. The expression of dominant-negative mutants and small interfering RNA of hVAP-33 in HCV replicon cells resulted in the relocation of NS5B from detergent-resistant to detergent-sensitive membranes. Correspondingly, the amounts of both HCV RNA and proteins in the cells were reduced, indicating that hVAP-33 is critical for the formation of HCV replication complex and RNA replication. These results indicate that protein-protein interactions among the various HCV NS proteins and hVAP-33 are important for the formation of HCV replication complex.  相似文献   

9.
Lee H  Liu Y  Mejia E  Paul AV  Wimmer E 《Journal of virology》2006,80(22):11343-11354
Replication of the plus-stranded RNA genome of hepatitis C virus (HCV) occurs in a membrane-bound replication complex consisting of viral and cellular proteins and viral RNA. NS5B, the RNA polymerase of HCV, is anchored to the membranes via a C-terminal 20-amino-acid-long hydrophobic domain, which is flanked on each side by a highly conserved positively charged arginine. Using a genotype 1b subgenomic replicon (V. Lohmann, F. Korner, J. O. Koch, U. Herian, L. Theilmann, and R. Bartensclager, Science 285:110-113, 1999), we determined the effect of mutations of some highly conserved residues in this domain. The replacement of arginine 570 with alanine completely abolished the colony-forming ability by the replicon, while a R591A change was found to be highly detrimental to replication, viability, and membrane binding by the mutant NS5B protein. Mutations of two other highly conserved amino acids (L588A and P589A) reduced but did not eliminate colony formation. It was of interest, if specific amino acid residues play a role in membrane anchoring of NS5B and replication, to determine whether a complete exchange of the NS5B hydrophobic domain with a domain totally unrelated to NS5B would ablate replication. We selected the 22-amino-acid-long hydrophobic domain of poliovirus polypeptide 3A that is known to adopt a transmembrane configuration, thereby anchoring 3A to membranes. Surprisingly, either partial or full replacement of the NS5B hydrophobic domain with the anchor sequences of poliovirus polypeptide 3A resulted in the replication of replicons whose colony-forming abilities were reduced compared to that of the wild-type replicon. Upon continued passage of the replicon in Huh-7 cells in the presence of neomycin, the replication efficiency of the replicon increased. However, the sequence of the poliovirus polypeptide 3A hydrophobic domain, in the context of the subgenomic HCV replicon, was stably maintained throughout 40 passages. Our results suggest that anchoring NS5B to membranes is necessary but that the amino acid sequence of the anchor per se does not require HCV origin. This suggests that specific interactions between the NS5B hydrophobic domain and other membrane-bound factors may not play a decisive role in HCV replication.  相似文献   

10.
We have identified a membrane-active region in the HCV NS5A protein by performing an exhaustive study of membrane rupture induced by a NS5A-derived peptide library on model membranes having different phospholipid compositions. We report the identification in NS5A of a highly membranotropic region located at the suggested membrane association domain of the protein. We report the binding and interaction with model membranes of two peptides patterned after this segment, peptides 1A and 1B, derived from the strains 1a_H77 and 1b_HC-4J respectively. We show that they insert into phospholipid membranes, interact with them, and are located in a shallow position in the membrane. The NS5A region where this segment resides might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the replication complex, and consequently, directly implicated in the HCV life cycle.  相似文献   

11.
Hepatitis C virus (HCV), known as the leading cause of liver cirrhosis, viral hepatitis, and hepatocellular carcinoma, has been affecting more than 150 million people globally. The HCV non‐structure 3 (NS3) protease protein domain plays a key role in HCV replication and pathogenesis; and is currently a primary target for HCV antiviral therapy. Through unbiased molecular dynamics simulations which take advantage of the novel highly mobile membrane mimetic model, we constructed the membrane‐bound state of the protein domain at the atomic level. Our results indicated that protease domain of HCV NS3 protein can spontaneously bind and penetrate to an endoplasmic reticulum complex membrane containing phosphatidylinositol 4,5‐bisphosphate (PIP2). An amphipathic helix α0 and loop S1 show their anchoring role to keep the protein on the membrane surface. Proper orientation of the protein domain at membrane surface was identified through measuring tilt angles of two specific vectors, wherein residue R161 plays a crucial role in its final orientation. Remarkably, PIP2 molecules were observed to bind to three main sites of the protease domain via specific electrostatic contacts and hydrogen bonds. PIP2‐interaction determines the protein orientation at the membrane while both hydrophobic interplay and PIP2‐interaction can stabilize the NS3 ‐ membrane complex. Simulated results provide us with a detailed characterization of insertion, orientation and PIP2‐interaction of NS3 protease domain at membrane environment, thus enhancing our understanding of structural functions and mechanism for the association of HCV non‐structure 3 protein with respect to ER membranes.  相似文献   

12.
The hepatitis C virus (HCV) nonstructural protein (NS) 5A is a phosphoprotein that associates with various cellular proteins and participates in the replication of the HCV genome. Human vesicle-associated membrane protein-associated protein (VAP) subtype A (VAP-A) is known to be a host factor essential for HCV replication by binding to both NS5A and NS5B. To obtain more information on the NS5A protein in HCV replication, we screened human brain and liver libraries by a yeast two-hybrid system using NS5A as bait and identified VAP-B as an NS5A-binding protein. Immunoprecipitation and mutation analyses revealed that VAP-B binds to both NS5A and NS5B in mammalian cells and forms homo- and heterodimers with VAP-A. VAP-A interacts with VAP-B through the transmembrane domain. NS5A interacts with the coiled-coil domain of VAP-B via 70 residues in the N-terminal and 341 to 344 amino acids in the C-terminal polyproline cluster region. NS5A was colocalized with VAP-B in the endoplasmic reticulum and Golgi apparatus. The specific antibody to VAP-B suppressed HCV RNA replication in a cell-free assay. Overexpression of VAP-B, but not of a mutant lacking its transmembrane domain, enhanced the expression of NS5A and NS5B and the replication of HCV RNA in Huh-7 cells harboring a subgenomic replicon. In the HCV replicon cells, the knockdown of endogenous VAP-B by small interfering RNA decreased expression of NS5B, but not of NS5A. These results suggest that VAP-B, in addition to VAP-A, plays an important role in the replication of the HCV genome.  相似文献   

13.
The mechanism and machinery of hepatitis C virus (HCV) RNA replication are still poorly understood. In this study, we labeled de novo-synthesized viral RNA in situ with bromouridine triphosphate (BrUTP) in Huh7 cells expressing an HCV subgenomic replicon. By immunofluorescence staining using an anti-BrUTP antibody and confocal microscopy, we showed that the newly synthesized HCV RNA was localized to distinct speckle-like structures, which also contain all of the HCV nonstructural (NS) proteins. These speckles are distinct from lipid droplets and are separated from the endoplasmic reticulum (ER), where some HCV NS proteins also reside. Membrane flotation analysis demonstrated that almost all of the NS5A and part of the NS5B proteins and all of the viral RNA were present in membrane fractions which are resistant to treatment with 1% NP-40 at 4 degrees C. They were cofractionated with caveolin-2, a lipid-raft-associated intracellular membrane protein, in the presence or absence of the detergent. In contrast, the ER-resident proteins were detergent soluble. These properties suggest that the membranes on which HCV RNA replication occurs are lipid rafts recruited from the intracellular membranes. The protein synthesis inhibitors cycloheximide and puromycin did not inhibit viral RNA synthesis, indicating that HCV RNA replication does not require continuous protein synthesis. We suggest that HCV RNA synthesis occurs on a lipid raft membrane structure.  相似文献   

14.
Hepatitis C virus (HCV) infection is sensed in the host cell by the cytosolic pathogen recognition receptor RIG-I. RIG-I signaling is propagated through its signaling adaptor protein MAVS to drive activation of innate immunity. However, HCV blocks RIG-I signaling through viral NS3/4A protease cleavage of MAVS on the mitochondrion-associated endoplasmic reticulum (ER) membrane (MAM). The multifunctional HCV NS3/4A serine protease is associated with intracellular membranes, including the MAM, through membrane-targeting domains within NS4A and also at the amphipathic helix α(0) of NS3. The serine protease domain of NS3 is required for both cleavage of MAVS, a tail-anchored membrane protein, and processing the HCV polyprotein. Here, we show that hydrophobic amino acids in the NS3 helix α(0) are required for selective cleavage of membrane-anchored portions of the HCV polyprotein and for cleavage of MAVS for control of RIG-I pathway signaling of innate immunity. Further, we found that the hydrophobic composition of NS3 helix α(0) is essential to establish HCV replication and infection. Alanine substitution of individual hydrophobic amino acids in the NS3 helix α(0) impaired HCV RNA replication in cells with a functional RIG-I pathway, but viral RNA replication was rescued in cells lacking RIG-I signaling. Therefore, the hydrophobic amphipathic helix α(0) of NS3 is required for NS3/4A control of RIG-I signaling and HCV replication by directing the membrane targeting of both viral and cellular substrates.  相似文献   

15.
Like all other positive-strand RNA viruses, hepatitis C virus (HCV) induces rearrangements of intracellular membranes that are thought to serve as a scaffold for the assembly of the viral replicase machinery. The most prominent membranous structures present in HCV-infected cells are double-membrane vesicles (DMVs). However, their composition and role in the HCV replication cycle are poorly understood. To gain further insights into the biochemcial properties of HCV-induced membrane alterations, we generated a functional replicon containing a hemagglutinin (HA) affinity tag in nonstructural protein 4B (NS4B), the supposed scaffold protein of the viral replication complex. By using HA-specific affinity purification we isolated NS4B-containing membranes from stable replicon cells. Complementing biochemical and electron microscopy analyses of purified membranes revealed predominantly DMVs, which contained viral proteins NS3 and NS5A as well as enzymatically active viral replicase capable of de novo synthesis of HCV RNA. In addition to viral factors, co-opted cellular proteins, such as vesicle-associated membrane protein-associated protein A (VAP-A) and VAP-B, that are crucial for viral RNA replication, as well as cholesterol, a major structural lipid of detergent-resistant membranes, are highly enriched in DMVs. Here we describe the first isolation and biochemical characterization of HCV-induced DMVs. The results obtained underline their central role in the HCV replication cycle and suggest that DMVs are sites of viral RNA replication. The experimental approach described here is a powerful tool to more precisely define the molecular composition of membranous replication factories induced by other positive-strand RNA viruses, such as picorna-, arteri- and coronaviruses.  相似文献   

16.
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic α-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic α-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.With 120 to 180 million chronically infected individuals worldwide, hepatitis C virus (HCV) infection represents a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (38). HCV contains a 9.6-kb positive-strand RNA genome that encodes a polyprotein of about 3,000 amino acids (reviewed in references 36 and 51). The polyprotein precursor is co- and posttranslationally processed by cellular and viral proteases to yield the mature structural and nonstructural proteins. The structural proteins include the core and the envelope glycoproteins E1 and E2. The nonstructural proteins include the p7 ion channel polypeptide, the NS2-3 and NS3-4A proteases, an RNA helicase located in the C-terminal two-thirds of NS3, the NS4B and NS5A proteins, and the NS5B RNA-dependent RNA polymerase. HCV replication takes place in a membrane-associated complex, composed of viral proteins, replicating RNA, altered cellular membranes, and other host factors (7, 18, 31, 43). Determinants for membrane association of the HCV nonstructural proteins have been mapped and a likely endoplasmic reticulum (ER)-derived membrane alteration, designated the membranous web, was found to harbor the HCV replication complex (7, 18; reviewed in reference 36).NS4B is a 27-kDa integral ER membrane protein (21). The expression of NS4B alone induces the formation of the membranous web (7). Thus, an essential function of NS4B is the induction of the specific membrane alteration that serves as a scaffold for the HCV replication complex. In addition, a nucleotide-binding motif has been proposed to reside in the middle of NS4B (8), and RNA binding properties have recently been reported for NS4B (9).Both the N and the C termini of NS4B are believed to be oriented toward the cytosol, and prediction algorithms indicate the presence of four putative transmembrane segments in the central portion of the protein (21, 27, 28, 42). The cytosolic orientation of the bulk of the protein was confirmed experimentally (21), but a more refined membrane topology is so far elusive. The introduction of glycosylation acceptor sites at various positions in NS4B validated the prediction of ER luminal loops around amino acid positions 112 and 161 (27, 28). Intriguingly, the N terminus of NS4B was reported to be translocated into the ER lumen at least partially, presumably by a posttranslational mechanism (28). Interestingly, the coexpression of the other HCV proteins appears to limit this translocation (27). A recent report indicates that NS4B is palmitoylated at C-terminal residues Cys 257 and Cys 261 and forms oligomers (59).In order to define the membrane topology of NS4B we have analyzed a comprehensive panel of green fluorescent protein (GFP) fusion constructs comprising different segments of NS4B (N. Arora, V. Castet, and D. Moradpour, unpublished data). In the course of these studies, we unexpectedly found that a fusion construct comprising the N-terminal 74 amino acids (aa) of NS4B was associated with membranes, while most prediction methods located the beginning of the first transmembrane segment around aa 74 (21, 28, 42). Here, we demonstrate that an amphipathic α-helix extending from aa 42 to 66 (α-helix 42-66) in the N-terminal portion of NS4B mediates this membrane association and plays an essential role in the formation of the HCV replication complex.  相似文献   

17.
Hepatitis C virus (HCV) NS5B protein has been shown to have RNA-dependent RNA polymerase (RdRp) activity by itself and is a key enzyme involved in viral replication. Using analyses with the yeast two-hybrid system and in vitro binding assay, we found that human eukaryotic initiation factor 4AII (heIF4AII), which is a component of the eIF4F complex and RNA-dependent ATPase/helicase, interacted with NS5B protein. These two proteins were shown to be partially colocalized in the perinuclear region. The binding site in HCV NS5B protein was localized within amino acid residues 495 to 537 near the C terminus. Since eIF4A has a helicase activity and functions in a bidirectional manner, the binding of HCV NS5B protein to heIF4AII raises the possibility that heIF4AII facilitates the genomic RNA synthesis of NS5B protein by unwinding the secondary structure of the HCV genome and is a host component of viral replication complex.  相似文献   

18.
We have identified a membrane-active region in the HCV NS4B protein by studying membrane rupture induced by a NS4B-derived peptide library on model membranes. This segment corresponds to one of two previously predicted amphipathic helix and define it as a new membrane association domain. We report the binding and interaction with model membranes of a peptide patterned after this segment, peptide NS4BH2, and show that NS4BH2 strongly partitions into phospholipid membranes, interacts with them, and is located in a shallow position in the membrane. Furthermore, changes in the primary sequence cause the disruption of the hydrophobicity along the structure and prevent the resulting peptide from interacting with the membrane. Our results suggest that the region where the NS4BH2 is located might have an essential role in the membrane replication and/or assembly of the viral particle through the modulation of the replication complex. Our findings therefore identify an important region in the HCV NS4B protein which might be implicated in the HCV life cycle and possibly in the formation of the membranous web.  相似文献   

19.
Sun HY  Ou NY  Wang SW  Liu WC  Cheng TF  Shr SJ  Sun KT  Chang TT  Young KC 《PloS one》2011,6(9):e25530
Molecular covariation of highly polymorphic viruses is thought to have crucial effects on viral replication and fitness. This study employs association rule data mining of hepatitis C virus (HCV) sequences to search for specific evolutionary covariation and then tests functional relevance on HCV replication. Data mining is performed between nucleotides in the untranslated regions 5' and 3'UTR, and the amino acid residues in the non-structural proteins NS2, NS3 and NS5B. Results indicate covariance of the 243(rd) nucleotide of the 5'UTR with the 14(th), 41(st), 76(th), 110(th), 211(th) and 212(th) residues of NS2 and with the 71(st), 175(th) and 621(st) residues of NS3. Real-time experiments using an HCV subgenomic system to quantify viral replication confirm replication regulation for each covariant pair between 5'UTR??? and NS2-41, -76, -110, -211, and NS3-71, -175. The HCV subgenomic system with/without the NS2 region shows that regulatory effects vanish without NS2, so replicative modulation mediated by HCV 5'UTR??? depends on NS2. Strong binding of the NS2 variants to HCV RNA correlates with reduced HCV replication whereas weak binding correlates with restoration of HCV replication efficiency, as determined by RNA-protein immunoprecipitation assay band intensity. The dominant haplotype 5'UTR???-NS2-41-76-110-211-NS3-71-175 differs according to the HCV genotype: G-Ile-Ile-Ile-Gly-Ile-Met for genotype 1b and A-Leu-Val-Leu-Ser-Val-Leu for genotypes 1a, 2a and 2b. In conclusion, 5'UTR??? co-varies with specific NS2/3 protein amino acid residues, which may have significant structural and functional consequences for HCV replication. This unreported mechanism involving HCV replication possibly can be exploited in the development of advanced anti-HCV medication.  相似文献   

20.
Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. It induces a specific membrane rearrangement, designated membranous web, that serves as a scaffold for the HCV replication complex. However, the mechanisms underlying membranous web formation are poorly understood. Based on fluorescence resonance energy transfer (FRET) and confirmatory coimmunoprecipitation analyses, we provide evidence for an oligomerization of NS4B in the membrane environment of intact cells. Several conserved determinants were found to be involved in NS4B oligomerization, through homotypic and heterotypic interactions. N-terminal amphipathic α-helix AH2, comprising amino acids 42 to 66, was identified as a major determinant for NS4B oligomerization. Mutations that affected the oligomerization of NS4B disrupted membranous web formation and HCV RNA replication, implying that oligomerization of NS4B is required for the creation of a functional replication complex. These findings enhance our understanding of the functional architecture of the HCV replication complex and may provide new angles for therapeutic intervention. At the same time, they expand the list of positive-strand RNA virus replicase components acting as oligomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号