首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In myotonic dystrophy (dystrophia myotonica, DM), expression of RNAs that contain expanded CUG or CCUG repeats is associated with degeneration and repetitive action potentials (myotonia) in skeletal muscle. Using skeletal muscle from a transgenic mouse model of DM, we show that expression of expanded CUG repeats reduces the transmembrane chloride conductance to levels well below those expected to cause myotonia. The expanded CUG repeats trigger aberrant splicing of pre-mRNA for ClC-1, the main chloride channel in muscle, resulting in loss of ClC-1 protein from the surface membrane. We also have identified a similar defect in ClC-1 splicing and expression in two types of human DM. We propose that a transdominant effect of mutant RNA on RNA processing leads to chloride channelopathy and membrane hyperexcitability in DM.  相似文献   

2.
In myotonic dystrophy 1 (DM1), aggregation of the mutant DMPK RNA into RNA-protein complexes containing MBNL1 and MBNL2 has been linked to aberrant splicing of the insulin receptor (IR) RNA. In a parallel line of investigation, elevated levels of CUG-binding protein (CUG-BP) have been shown to result in altered IR splicing in DM1. The relative importance of MBNL1, MBNL2, and CUG-BP in DM1 pathogenesis is, however, unclear. Here we have demonstrated that either small interfering RNA-mediated down-regulation of MBNL1 and MBNL2 or the overexpression of CUG-BP in normal myoblasts results in abnormal IR splicing. Our results suggest that CUG-BP regulates the equilibrium of splice site selection by antagonizing the facilitatory activity of MBNL1 and MBNL2 on IR exon 11 splicing in a dose-dependent manner. We have shown that CUG-BP levels are elevated in DM1 cells by mechanisms that are independent of MBNL1 and MBNL2 loss. Importantly, rescue experiments in DM1 myoblasts demonstrated that loss of MBNL1 function is the key event, whereas the overexpression of CUG-BP plays a secondary role in the aberrant alternative splicing of IR RNA in DM1. Small interfering RNA-mediated down-regulation of MBNL1, MBNL2, and CUG-BP in DM1 myoblasts demonstrated that MBNL1 plays a critical role in the maintenance of DM1 focus integrity. Thus, these experiments demonstrate that sequestration of MBNL1 by the expanded CUG repeats is the primary determinant of both DM1 focus formation and the abnormal splicing of the IR RNA in DM1 myoblasts. The data therefore support MBNL1-mediated therapy for DM1.  相似文献   

3.
The expression and function of the skeletal muscle chloride channel CLCN1/ClC-1 is regulated by alternative splicing. Inclusion of the CLCN1 exon 7A is aberrantly elevated in myotonic dystrophy (DM), a genetic disorder caused by the expansion of a CTG or CCTG repeat. Increased exon 7A inclusion leads to a reduction in CLCN1 function, which can be causative of myotonia. Two RNA-binding protein families—muscleblind-like (MBNL) and CUG-BP and ETR-3-like factor (CELF) proteins—are thought to mediate the splicing misregulation in DM. Here, we have identified multiple factors that regulate the alternative splicing of a mouse Clcn1 minigene. The inclusion of exon 7A was repressed by MBNL proteins while promoted by an expanded CUG repeat or CELF4, but not by CUG-BP. Mutation analyses suggested that exon 7A and its flanking region mediate the effect of MBNL1, whereas another distinct region in intron 6 mediates that of CELF4. An exonic splicing enhancer essential for the inclusion of exon 7A was identified at the 5′ end of this exon, which might be inhibited by MBNL1. Collectively, these results provide a mechanistic model for the regulation of Clcn1 splicing, and reveal novel regulatory properties of MBNL and CELF proteins.  相似文献   

4.
5.
6.
Myotonic dystrophy is the most common muscular dystrophy in adults and the first recognized example of an RNA-mediated disease. Congenital myotonic dystrophy (CDM1) and myotonic dystrophy of type 1 (DM1) or of type 2 (DM2) are caused by the expression of mutant RNAs containing expanded CUG or CCUG repeats, respectively. These mutant RNAs sequester the splicing regulator Muscleblind-like-1 (MBNL1), resulting in specific misregulation of the alternative splicing of other pre-mRNAs. We found that alternative splicing of the bridging integrator-1 (BIN1) pre-mRNA is altered in skeletal muscle samples of people with CDM1, DM1 and DM2. BIN1 is involved in tubular invaginations of membranes and is required for the biogenesis of muscle T tubules, which are specialized skeletal muscle membrane structures essential for excitation-contraction coupling. Mutations in the BIN1 gene cause centronuclear myopathy, which shares some histopathological features with myotonic dystrophy. We found that MBNL1 binds the BIN1 pre-mRNA and regulates its alternative splicing. BIN1 missplicing results in expression of an inactive form of BIN1 lacking phosphatidylinositol 5-phosphate-binding and membrane-tubulating activities. Consistent with a defect of BIN1, muscle T tubules are altered in people with myotonic dystrophy, and membrane structures are restored upon expression of the normal splicing form of BIN1 in muscle cells of such individuals. Finally, reproducing BIN1 splicing alteration in mice is sufficient to promote T tubule alterations and muscle weakness, a predominant feature of myotonic dystrophy.  相似文献   

7.
In myotonic dystrophy (DM1), both inactivation of muscleblind proteins and increased levels of CUG-BP1 are reported. These events have been shown to contribute independently to aberrant splicing of a subset RNAs. We demonstrate that steady-state levels of the splice regulator, hnRNP H, are elevated in DM1 myoblasts and that increased hnRNP H levels in normal myoblasts results in the inhibition of insulin receptor (IR) exon 11 splicing in a manner similar to that observed in DM1. In normal myoblasts, overexpression of either hnRNP H or CUG-BP1 results in the formation of an RNA-dependent suppressor complex consisting of both hnRNP H and CUG-BP1, which is required to maximally inhibit IR exon 11 inclusion. Elevated levels of MBNL1 show RNA-independent interaction with hnRNP H and dampen the inhibitory activity of increased hnRNP H levels on IR splicing in normal myoblasts. In DM1 myoblasts, overexpression of MBNL1 in conjunction with si-RNA mediated depletion of hnRNP H contributes to partial rescue of the IR splicing defect. These data demonstrate that coordinated physical and functional interactions between hnRNP H, CUG-BP1 and MBNL1 dictate IR splicing in normal and DM1 myoblasts.  相似文献   

8.
The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy.  相似文献   

9.
How mechanochemical signals induced by the amount of weight borne by the skeletal musculature are translated into modifications to muscle sarcomeres is poorly understood. Our laboratory recently demonstrated that, in response to experimentally induced increases in the weight load borne by a rat, alternative splicing of the fast skeletal muscle troponin T (Tnnt3) pre-mRNA in gastrocnemius was adjusted in a correlated fashion with the amount of added weight. (Schilder RJ, Kimball SR, Marden JH, Jefferson LS. J Exp Biol 214: 1523-1532, 2011). Thus muscle load is perceived quantitatively by the body, and mechanisms that sense it appear to control processes that generate muscle sarcomere composition plasticity, such as alternative pre-mRNA splicing. Here we demonstrate how mechanical stretch (see earlier comment) of C2C12 muscle cells in culture results in changes to Tnnt3 pre-mRNA alternative splicing that are qualitatively similar to those observed in response to added weight in rats. Moreover, inhibition of Akt signaling, but not that of ERK1/2, prevents the stretch-induced effect on Tnnt3 pre-mRNA alternative splicing. These findings suggest that effects of muscle load on Tnnt3 pre-mRNA alternative splicing are controlled by a cell-autonomous mechanism, rather than systemically. They also indicate that, in addition to its regulatory role in protein synthesis and muscle mass plasticity, Akt signaling may regulate muscle sarcomere composition by modulating alternative splicing events in response to load. Manipulation of Tnnt3 pre-mRNA alternative splicing by mechanical stretch of cells in culture provides a model to investigate the biology of weight sensing by skeletal muscles and facilitates identification of mechanisms through which skeletal muscles match their performance and experienced load.  相似文献   

10.
11.
In myotonic dystrophy type 1 (DM1), dystrophia myotonica protein kinase messenger ribonucleic acids (RNAs; mRNAs) with expanded CUG repeats (CUG(exp)) aggregate in the nucleus and become toxic to cells by sequestering and/or misregulating RNA-binding proteins, resulting in aberrant alternative splicing. In this paper, we find that the RNA-binding protein Staufen1 is markedly and specifically increased in skeletal muscle from DM1 mouse models and patients. We show that Staufen1 interacts with mutant CUG(exp) mRNAs and promotes their nuclear export and translation. This effect is critically dependent on the third double-stranded RNA-binding domain of Staufen1 and shuttling of Staufen1 into the nucleus via its nuclear localization signal. Moreover, we uncover a new role of Staufen1 in splicing regulation. Overexpression of Staufen1 rescues alternative splicing of two key pre-mRNAs known to be aberrantly spliced in DM1, suggesting its increased expression represents an adaptive response to the pathology. Altogether, our results unravel a novel function for Staufen1 in splicing regulation and indicate that it may positively modulate the complex DM1 phenotype, thereby revealing its potential as a therapeutic target.  相似文献   

12.
13.
J E Mermoud  P T Cohen    A I Lamond 《The EMBO journal》1994,13(23):5679-5688
Splicing of mRNA precursors (pre-mRNA) is preceded by assembly of the pre-mRNA with small nuclear ribonucleoprotein particles (snRNPs) and protein factors to form a splicesome. Here we show that stimulating Ser/Thr-specific protein dephosphorylation selectively inhibits an early step during mammalian spliceosome assembly. Treatment of HeLa nuclear splicing extracts with human protein phosphatase 1 (PP1) expressed in Escherichia coli, or PP1 purified from rabbit skeletal muscle, prevents pre-spliceosome E complex (early complex) formation and stable binding of U2 and U4/U6.U5 snRNPs to the pre-mRNA. PP1 does not inhibit splicing catalysis if added after spliceosome assembly has taken place. Addition of purified SR protein splicing factors restores spliceosome formation and splicing to PP1-inhibited extracts, consistent with SR proteins being targets regulated by phosphorylation. These data extend earlier observations showing that splicing catalysis, but not spliceosome assembly, is blocked by inhibiting protein phosphatases. It therefore appears that pre-mRNA splicing, in common with other biological processes, can be regulated both positively and negatively by reversible protein phosphorylation.  相似文献   

14.
INSR, one of those genes aberrantly expressed in myotonic dystrophy type 1 (DM1) and type 2 (DM2) due to a toxic RNA effect, encodes for the insulin receptor (IR). Its expression is regulated by alternative splicing generating two isoforms: IR-A, which predominates in embryonic tissue, and IR-B, which is highly expressed in adult, insulin-responsive tissues (skeletal muscle, liver, and adipose tissue). The aberrant INSR expression detected in DM1 and DM2 muscles tissues, characterized by a relative increase of IR-A versus IR-B, was pathogenically related to the insulin resistance occurring in DM patients. To assess if differences in the aberrant splicing of INSR could underlie the distinct fiber type involvement observed in DM1 and DM2 muscle tissues, we have used laser capture microdissection (LCM) and RT-PCR, comparing the alternative splicing of INSR in type I and type II muscle fibers isolated from muscle biopsies of DM1, DM2 patients and controls. In the controls, the relative amounts of IR-A and IR-B showed no obvious differences between type I and type II fibers, as in the whole muscle tissue. In DM1 and DM2 patients, both fiber types showed a similar, relative increase of IR-A versus IR-B, as also evident in the whole muscle tissue. Our data suggest that the distinct fiber type involvement in DM1 and DM2 muscle tissues would not be related to qualitative differences in the expression of INSR. LCM can represent a powerful tool to give a better understanding of the pathogenesis of myotonic dystrophies, as well as other myopathies.  相似文献   

15.
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are progressive multisystemic disorders caused by similar mutations at two different genetic loci. The common key feature of DM pathogenesis is nuclear accumulation of mutant RNA which causes aberrant alternative splicing of specific pre-mRNAs by altering the functions of two RNA binding proteins, MBNL1 and CUGBP1. However, DM1 and DM2 show disease-specific features that make them clearly separate diseases suggesting that other cellular and molecular pathways may be involved. In this study we have analysed the histopathological, and biomolecular features of skeletal muscle biopsies from DM1 and DM2 patients in relation to presenting phenotypes to better define the molecular pathogenesis. Particularly, the expression of CUGBP1 protein has been examined to clarify if this factor may act as modifier of disease-specific manifestations in DM. The results indicate that the splicing and muscle pathological alterations observed are related to the clinical phenotype both in DM1 and in DM2 and that CUGBP1 seems to play a role in classic DM1 but not in DM2. In conclusion, our results indicate that multisystemic disease spectrum of DM pathologies may not be explained only by spliceopathy thus confirming that the molecular pathomechanism of DM is more complex than that actually suggested.  相似文献   

16.
Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder of muscular dystrophy characterized by muscle weakness and wasting. DM1 is caused by expansion of CTG repeats in the 3′-untranslated region (3′-UTR) of DM protein kinase (DMPK) gene. Since CUG-repeat RNA transcribed from the expansion of CTG repeats traps RNA-binding proteins that regulate alternative splicing, several abnormalities of alternative splicing are detected in DM1, and the abnormal splicing of important genes results in the appearance of symptoms. In this study, we identify two abnormal splicing events for actinin-associated LIM protein 3 (PDLIM3/ALP) and fibronectin 1 (FN1) in the skeletal muscles of DM1 patients. From the analysis of the abnormal PDLIM3 splicing, we propose that ZASP-like motif-deficient PDLIM3 causes the muscular symptoms in DM. PDLIM3 binds α-actinin 2 in the Z-discs of muscle, and the ZASP-like motif is needed for this interaction. Moreover, in adult humans, PDLIM3 expression is highest in skeletal muscles, and PDLIM3 splicing in skeletal muscles is regulated during human development.  相似文献   

17.
18.
Quantitative analysis of CUG-BP1 binding to RNA repeats   总被引:2,自引:0,他引:2  
CUG-binding protein 1 (CUG-BP1) is a member of the CUG-BP1 and ETR-3-like factors (CELF) family of RNA-binding proteins, and is involved in myotonic dystrophy type 1 (DM1). Several mRNA targets of CUG-BP1 have been identified, including the insulin receptor, muscle chloride channel, and cardiac troponin T. On the other hand, CUG-BP1 has only a weak affinity for CUG repeats. We conducted quantitative-binding assays to assess CUG-BP1 affinities for several repeat RNAs by surface plasmon resonance (SPR). Although we detected interactions between CUG-BP1 and CUG repeats, other UG-rich sequences actually showed stronger interactions. Binding constants of CUG-BP1 for RNAs indicated that the affinity for UG repeats was far stronger than for CUG repeats. We also found that N-terminal deletion mutant of CUG-BP1 has UG repeat-binding activity in a yeast three-hybrid system, although C-terminal deletion mutant does not. Our data indicates that CUG-BP1 specifically recognized UG repeats, probably through cooperative binding of RNA recognition motifs at both ends of the protein. This is the first report of a binding constant for CUG-BP1 calculated in vitro.  相似文献   

19.
The alpha-actinin gene has a pair of alternatively spliced exons. The smooth muscle (SM) exon is repressed in most cell types by polypyrimidine tract binding protein (PTB). CELF (CUG-BP and ETR3-like factors) family proteins, splicing regulators whose activities are altered in myotonic dystrophy, were found to coordinately regulate selection of the two alpha-actinin exons. CUG-BP and ETR3 activated the SM exon, and along with CELF4 they were also able to repress splicing of the NM (nonmuscle) exon both in vivo and in vitro. Activation of SM exon splicing was associated with displacement of PTB from the polypyrimidine tract by binding of CUG-BP at adjacent sites. Our data provides direct evidence for the activity of CELF proteins as both activators and repressors of splicing within a single-model system of alternative splicing, and suggests a model whereby alpha-actinin alternative splicing is regulated by synergistic and antagonistic interactions between members of the CELF and PTB families.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号