首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Kaolin strongly adsorbed rheumatoid factor (RF) and mono-nucleosis antibodies, while cold agglutinins and some antimicrobial IgM antibodies were poorly adsorbed. Maximum adsorption took place at a pH of about 7. The degree of adsorption also depended on the amount of kaolin. Rheumatoid factor could be eluted from kaolin at pH 11 after adsorption at pH 7. The reported heterogeneity with regard to reactivity with kaolin is suggested to be due to hydrophobic interactions.  相似文献   

2.
Neither solutions of salts nor solutions of detergents or of an alcohol at pH 4 are capable of eluting poliovirus adsorbed to membrane filters. However, solutions containing both a salt, such as magnesium chloride or sodium chloride, and a detergent or alcohol at pH 4 were capable of eluting adsorbed virus. The ability of ions to promote elution of virus at low pH in the presence of detergent or alcohol was dependent on the size of the ions and the ionic strength of the medium. These results suggest that both electrostatic and hydrophobic interactions are important in maintaining virus adsorption to membrane filters. Hydrophobic interactions can be disrupted by detergents or alcohols. It appears that electrostatic interactions can be disrupted by raising the pH of a solution or by adding certain salts. Disruption of either electrostatic or hydrophobic interactions alone does not permit efficient elution of the adsorbed virus at low pHs. However, when both interactions are disrupted, most of the poliovirus adsorbed to membrane filters is eluted, even at pH 4.  相似文献   

3.
Neither solutions of salts nor solutions of detergents or of an alcohol at pH 4 are capable of eluting poliovirus adsorbed to membrane filters. However, solutions containing both a salt, such as magnesium chloride or sodium chloride, and a detergent or alcohol at pH 4 were capable of eluting adsorbed virus. The ability of ions to promote elution of virus at low pH in the presence of detergent or alcohol was dependent on the size of the ions and the ionic strength of the medium. These results suggest that both electrostatic and hydrophobic interactions are important in maintaining virus adsorption to membrane filters. Hydrophobic interactions can be disrupted by detergents or alcohols. It appears that electrostatic interactions can be disrupted by raising the pH of a solution or by adding certain salts. Disruption of either electrostatic or hydrophobic interactions alone does not permit efficient elution of the adsorbed virus at low pHs. However, when both interactions are disrupted, most of the poliovirus adsorbed to membrane filters is eluted, even at pH 4.  相似文献   

4.
Adsorption of proteins from a crude preparation containing a lipase from Aspergillus niger on microporous polypropylene hollow fibers was studied at six different temperatures. Langmuir isotherms accurately describe the overall adsorption equilibria. Lipase is selectively adsorbed relative to the other proteins in the crude preparation. Hence, immobilization also provides further purification of the lipase. The predictions of the Langmuir model for the change in the specific activity of lipase upon adsorption are consistent with experimental results. The loading capacity of the hollow fibers decreases and the adsorption constant increases as temperature is increased. This effect is more significant in the case of lipolytic activity than it is for the total amount of adsorbed protein. Small, positive enthalpy changes are associated with the adsorption of lipase on these hydrophobic membranes.  相似文献   

5.
Viruses were characterized by their adsorption to DEAE-Sepharose or by their elution from octyl-Sepharose by using buffered solutions of sodium chloride with different ionic strengths. Viruses whose adsorption to DEAE-Sepharose was reduced most rapidly by an increase in the sodium chloride concentration were considered to have the weakest electrostatic interactions with the solids; these viruses included MS2, E1, and phiX174. Viruses whose adsorption to DEAE-Sepharose was reduced least rapidly were considered to have the strongest electrostatic interactions with the column; these viruses included P1, T4, T2, and E5. All of the viruses studied adsorbed to octyl-Sepharose in the presence of 4 M NaCl. Viruses that were eluted most rapidly following a decrease in the concentration of NaCl were considered to have the weakest hydrophobic interactions with the column; these viruses included phiX174, CB4, and E1. Viruses that were eluted least rapidly from the columns after the NaCl concentration was decreased were considered to have the strongest hydrophobic interactions with the column; these viruses included f2, MS2, and E5.  相似文献   

6.
The interactions of transcobalamin II (TC II), intrinsic factor (IF) and R-type binding protein of cobalamin (Cb1, vitamin B12) with the hydrophobic chromatography matrix Phenyl-Sepharose CL-4B were investigated. IF-Cb1 and R-Cb1 complexes were not adsorbed on Phenyl-Sepharose at room temperature or at 4°C with buffer containing 50 mM sodium phosphate, pH 7.4 containing 150 mM sodium chloride. The TC II-Cb1 complex adsorbed and could be eluted with buffer containing 50% vv glycerol. IF without Cb1 adsorbed and was eluted with 50% glycerol at room temperature and 4°C. At room temperature, R binder without Cb1 eluted with buffer, but later than the R-Cb1 complex. At 4°C, R binder completely adsorbed to the matrix. TC II-without Cb1 bound to the matrix at 4°C and room temperature and could not be eluted with glycerol. These results suggest that Cb1 binding proteins can be separated and identified based on their hydrophobic properties. In addition, upon binding Cb1, TC II, IF and R-type binders undergo a conformational change such that the protein-Cb1 complex shows reduced hydrophobicity.  相似文献   

7.
Endotoxin, a major pyrogen of concern to the biological industry, is a lipopolysaccharide containing a highly hydrophobic region, lipid A, in its structure. The effect of hydrophobic interaction on endotoxin adsorption from an aqueous solution was studied by covalently bonding aminoalkyl groups with varying hydrocarbon lengths to a cellulose and acrylic composite matrix. The amount of endotoxin adsorbed on the matrix increased with the increasing length of alkyl groups, demonstrating the contribution of hydrophobic interaction between endotoxin and the solid matrix. Both the hydrophobic and the charge interaction prove to be effective for endotoxin adsorption, and a synergistic effect from the dual chemical forces is achievable under specified conditions. The effect of solvent, pH and salts on endotoxin adsorption provides further evidence for the importance of hydrophobic force as a means of removing endotoxin from aqueous solutions.  相似文献   

8.
Phospholipase C (phosphatidylcholine choline-phosphohydrolase, EC 3.1.4.E) from Bacillus cereus (IAM-1208) was adsorbed to palmitoyl cellulose from a crude enzyme solution at pH 5--9. The adsorption was not influenced by ionic strength up to 2 M NaCl. The adsorbed enzyme was eluted almost completely by washing the cellulose with a suitable detergent, such as Triton X-100, Adekatol SO-120, Cation DT-205, or sodium deoxycholate. The enzyme was then purified by column chromatography on a palmitoylated textile (palmitoylated gauze) with an overall recovery of 91% and a 467-fold increase in specific activity over that of enzyme in the crude culture supernatant. Subsequent fractionation with acetone and chromatography on a Sephadex G-75 column separated two nearly homogeneous phospholipase C's. The enzyme adsorbed on palmitoyl cellulose was active, although its activity was about one-fourth that of free phospholipase C. Therefore, the enzyme appeared to be adsorbed to the cellulose through a hydrophobic site that was distinct from the catalytic site on the enzyme molecule.  相似文献   

9.
Gastric lipase is active under acidic conditions and shows optimum activity on insoluble triglycerides at pH 4. The present results show that gastric lipase also acts in solution on vinyl butyrate, with an optimum activity above pH 7, which suggests that gastric lipase is able to hydrolyze ester bonds via the classical mechanism of serine hydrolases. These results support previous structural studies in which the catalytic triad of gastric lipase was reported to show no specific features. The optimum activity of gastric lipase shifted toward lower pH values, however, when the vinyl butyrate concentration was greater than the solubility limit. Experiments performed with long-chain triglycerides showed that gastric lipase binds optimally to the oil-water interface at low pH values. To study the effects of the pH on the adsorption step independently from substrate hydrolysis, gastric lipase adsorption on solid hydrophobic surfaces was monitored by total internal reflection fluorescence (TIRF), as well as using a quartz crystal microbalance. Both techniques showed a pH-dependent reversible gastric lipase adsorption process, which was optimum at pH 5 (Kd = 6.5 nM). Lipase adsorption and desorption constants (ka = 147,860 M(-1) s(-1) and kd = 139 x 10(-4) s(-1) at pH 6) were estimated from TIRF experiments. These results indicate that the optimum activity of gastric lipase at acidic pH is only "apparent" and results from the fact that lipase adsorption at lipid-water interfaces is the pH-dependent limiting step in the overall process of insoluble substrate hydrolysis. This specific kinetic feature of interfacial enzymology should be taken into account when studying any soluble enzyme acting on an insoluble substrate.  相似文献   

10.
11.
Adsorption of DNA to sand and variable degradation rates of adsorbed DNA   总被引:11,自引:0,他引:11  
Adsorption and desorption of DNA and degradation of adsorbed DNA by DNase I were studied by using a flowthrough system of sand-filled glass columns. Maximum adsorption at 23 degrees C occurred within 2 h. The amounts of DNA which adsorbed to sand increased with the salt concentration (0.1 to 4 M NaCl and 1 mM to 0.2 M MgCl2), salt valency (Na+ less than Mg2+ and Ca2+), and pH (5 to 9). Maximum desorption of DNA from sand (43 to 59%) was achieved when columns were eluted with NaPO4 and NaCl for 6 h or with EDTA for 1 h. DNA did not desorb in the presence of detergents. It is concluded that adsorption proceeded by physical and chemical (Mg2+ bridging) interaction between the DNA and sand surfaces. Degradability by DNase I decreased upon adsorption of transforming DNA. When DNA adsorbed in the presence of 50 mM MgCl2, the degradation rate was higher than when it adsorbed in the presence of 20 mM MgCl2. The sensitivity to degradation of DNA adsorbed to sand at 50 mM MgCl2 decreased when the columns were eluted with 0.1 mM MgCl2 or 100 mM EDTA before application of DNase I. This indicates that at least two types of DNA-sand complexes with different accessibilities of adsorbed DNA to DNase I existed. The degradability of DNA adsorbed to minor mineral fractions (feldspar and heavy minerals) of the sand differed from that of quartz-adsorbed DNA.  相似文献   

12.
The effects of bile salts and colipase on the adsorption of lipase at an interface were studied by hydrophobic affinity chromatography on phenyl- and octyl-Sepharose. In the absence of bile salts, lipase or colipase binds separately to the gel. This is unchanged in the presence of adsorbed bile salts, when one bile salt molecule is associated per hydrophobic ligand. The same data are obtained in the presence of monomeric bile salt solutions. In contrast, lipase adsorption is totally prevented in a micellar bile salt solution. These results favor the idea that the formation of a lipase-bile salt complex in solution is responsible for the lack of interfacial lipase adsorption.  相似文献   

13.
Adsorption and desorption of DNA and degradation of adsorbed DNA by DNase I were studied by using a flowthrough system of sand-filled glass columns. Maximum adsorption at 23 degrees C occurred within 2 h. The amounts of DNA which adsorbed to sand increased with the salt concentration (0.1 to 4 M NaCl and 1 mM to 0.2 M MgCl2), salt valency (Na+ less than Mg2+ and Ca2+), and pH (5 to 9). Maximum desorption of DNA from sand (43 to 59%) was achieved when columns were eluted with NaPO4 and NaCl for 6 h or with EDTA for 1 h. DNA did not desorb in the presence of detergents. It is concluded that adsorption proceeded by physical and chemical (Mg2+ bridging) interaction between the DNA and sand surfaces. Degradability by DNase I decreased upon adsorption of transforming DNA. When DNA adsorbed in the presence of 50 mM MgCl2, the degradation rate was higher than when it adsorbed in the presence of 20 mM MgCl2. The sensitivity to degradation of DNA adsorbed to sand at 50 mM MgCl2 decreased when the columns were eluted with 0.1 mM MgCl2 or 100 mM EDTA before application of DNase I. This indicates that at least two types of DNA-sand complexes with different accessibilities of adsorbed DNA to DNase I existed. The degradability of DNA adsorbed to minor mineral fractions (feldspar and heavy minerals) of the sand differed from that of quartz-adsorbed DNA.  相似文献   

14.
The defatted starch was dispersed in NaOH (1 M) and neutralized with HCl (1 M). The amylose 1-butanol complex is adsorbed on defatted cellulose powder in the solvent system containing acetate buffer (pH 4.8,0.1 M) + urea (2 M) + 1-butanol (8.5%, v/v). The complex adsorbed on cellulose powder is separated by centrifugation (2418 g). The sediment is washed with the solvent system-I to obtain the intermediate fraction. The adsorbed amylose is eluted with urea (2 M) in acetate buffer (pH 4.8, 0.1 M). The amylose, intermediate fraction and amylopectin were precipitated with ethanol, washed free of urea and air dried. They were characterized by determining their blue value and beta -amylolysis limit.  相似文献   

15.
An airlift draft-tube fluidized bioreactor has been designed and tested for applications in protein bioseparation. Operating parameters and geometrical dimensions of the bioreactor were optimized to ensure fluid circulation in a defined cyclic pattern between the riser and the downcomer. The overall directionality of liquid flow generates homogeneous field of low shear and achieves good mixing efficiency. Bioseparation of proteins was achieved from solutions containing both BSA and BHb at different initial concentrations and at pH 7. Similar adsorption capacities of both proteins were observed in single protein adsorption experiments at pH 7. Compressibility of BHb allowed for high adsorption capacity, in addition to the hydrophobic interaction forces. Apparently the homogeneous and lower shear generated by the airlift bioreactor reduces the compressibility of adsorbed BHb. This allowed for higher BSA adsorption from solutions containing BSA and BHb mixtures. Conventional batch adsorption experiments showed more adsorption of BHb, which reduces bioseparation efficiency.  相似文献   

16.
Viruses were characterized by their adsorption to DEAE-Sepharose or by their elution from octyl-Sepharose by using buffered solutions of sodium chloride with different ionic strengths. Viruses whose adsorption to DEAE-Sepharose was reduced most rapidly by an increase in the sodium chloride concentration were considered to have the weakest electrostatic interactions with the solids; these viruses included MS2, E1, and X174. Viruses whose adsorption to DEAE-Sepharose was reduced least rapidly were considered to have the strongest electrostatic interactions with the column; these viruses included P1, T4, T2, and E5. All of the viruses studied adsorbed to octyl-Sepharose in the presence of 4 M NaCl. Viruses that were eluted most rapidly following a decrease in the concentration of NaCl were considered to have the weakest hydrophobic interactions with the column; these viruses included X174, CB4, and E1. Viruses that were eluted least rapidly from the columns after the NaCl concentration was decreased were considered to have the strongest hydrophobic interactions with the column; these viruses included f2, MS2, and E5.  相似文献   

17.
Chitosan microsphere (CS) was prepared by phase-inversion method as the support matrices. Cibacron Blue F3GA (CB) was covalently attached to the chitosan microspheres, and thus the novel dye-affinity adsorbent was obtained. These Cibacron Blue F3GA-attached chitosan microspheres (CB-CS) were used in the catalase (CAT) adsorption studies. The maximum CAT adsorption capacity of Cibacron Blue F3GA-attached chitosan microspheres was 28.4 mg/g at pH 7.0. Langmuir adsorption model was found to be applicable in interpreting CAT adsorption. Significant amount of the adsorbed CAT (up to 90.6%) was eluted in the elution medium containing 0.5 M NaSCN at pH 8.0. It appears that CB-CS can be applied for adsorption of CAT without causing any denaturation.  相似文献   

18.
Nonspecific adsorption of serum proteins occurs with immunoadsorption of antibodies on Sepharose-myoglobin and Sepharose-staphylococcal nuclease immunoadsorbents. This adsorption results from nonspecific hydrophobic and ionic interactions between these serum proteins and the immunoadsorbents. Various preelution washing procedures were examined, and only borate-saline buffer (pH 8,5) containing a nonionic detergent, Tween 20 (0,1%), and a high salt concentration (1 m NaCl) eliminated or significantly reduced nonspecific adsorption without appreciably diminishing the recovery of specifically adsorbed antibodies.  相似文献   

19.
Diatomaceous earth was modified by in situ precipitation of metallic hydroxides. Modification decreased the negative charge on the diatomaceous earth and increased its ability to adsorb viruses in water. Electrostatic interactions were more important than hydrophobic interactions in virus adsorption to modified diatomaceous earth. Filters containing diatomaceous earth modified by in situ precipitation of a combination of ferric chloride and aluminum chloride adsorbed greater than 80% of enteroviruses (poliovirus 1, echovirus 5, and coxsackievirus B5) and coliphage MS2 present in tap water at ambient pH (7.8 to 8.3), even after filtration of 100 liters of tap water. Viruses adsorbed to the filters could be recovered by mixing the modified diatomaceous earth with 3% beef extract plus 1 M NaCl (pH 9).  相似文献   

20.
The presence of cosolvents and co-solutes during the immobilization of lipases on hydrophobic supports may influence the extent of lipase immobilization and the long-term catalytic stability of the biocatalyst. Candida antarctica B lipase immobilization was examined on a hydrophobic surface, i.e., gold modified with a methyl-terminated, self-assembled alkylthiol layer. Lipase adsorption was monitored gravimetrically using a quartz crystal microbalance (QCM). Lipase activity was determined colorimetrically by following p-nitrophenol propionate hydrolysis. Adsorbed lipase topography was examined by atomic force microscopy (AFM). Lipase adsorption from low ionic strength aqueous buffer produced a uniform confluent protein monolayer. Inclusion of 10% (vol) ethanol in the buffer during immobilization resulted in a 33% adsorbed mass increase. Chemically similar cosolvents, all at 10% by volume in buffer, were also individually examined for their influence on CALB adsorption. Glycerol or 1-propanol increased mass adsorption by 10%, while 2-propanol increased mass adsorption by 33%. QCM dissipation values increased threefold with the inclusion of either ethanol or 2-propanol in the medium during lipase adsorption, indicating formation of multilayers of CALB. Partial multilayer formation using 10% ethanol was confirmed by AFM. Inclusion of 10% ethanol in the CALB immobilization buffer decreased the specific activity of the immobilized lipase by 37%. The formation of lipase multilayers in the presence of certain cosolvents thus results in lower specific activity, which might be due to either influences on lipase conformation or substrate active site accessibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号