首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assertion that the spatial location of different species is independent of each other is fundamental in major ecological theories such as neutral theory that describes a stochastic geometry of biodiversity. However, this assertion has rarely been tested. Here we use techniques of spatial point pattern analysis to conduct a comprehensive test of the independence assertion by analysing data from three large forest plots with different species richness: a species-rich tropical forest at Barro Colorado Island (Panama), a tropical forest in Sinharaja (Sri Lanka), and a temperate forest in Changbaishan (China). We hypothesize that stochastic dilution effects owing to increasing species richness overpower signals of species associations, thereby yielding approximate species independence. Indeed, the proportion of species pairs showing: (i) no significant interspecific association increased with species richness, (ii) segregation decreased with species richness, and (iii) small-scale interspecific interaction decreased with species richness. This suggests that independence may indeed be a good approximation in the limit of very species-rich communities. Our findings are a step towards a better understanding of factors governing species-rich communities and we propose a hypothesis to explain why species placement in species-rich communities approximates independence.  相似文献   

2.
Traditional biodiversity metrics operate at the level of a plant community but do not capture spatial variation in diversity from a ‘plant's‐eye view’ of a community. Recently‐developed statistics consider the spatial patterns of plants as well as the number and distribution of species in local plant neighborhoods to quantitatively assess multispecies spatial patterns from a ‘plant's‐eye view’. We used one such statistic, the individual species area relationship (ISAR), to assess spatial patterns of species diversity in a Great Basin (USA) semi‐arid shrubland through an analysis of a spatial dataset on shrub species and locations. In conjunction with appropriate null models, the ISAR blends species area relationships with second‐order spatial statistics to measure the expected species richness in local neighborhoods of variable size around the individuals of a focal species within a community. We found that, contrary to a previous analysis using more traditional methods, the community was well‐mixed with a typical shrub surrounded on average by 4.9 shrub neighbors of 2.1 species at a neighborhood scale of 1.0 m. We also found statistically significant fine‐scale variation in diversity patterns, such that neighborhoods of two species were more diverse than expected by a heterogeneous Poisson null model that accounted for larger‐scale habitat heterogeneity. However, this effect was caused by intraspecific aggregation of these species and was not due to positive interspecific association. Contrary to previous findings in other semi‐arid shrublands, our analysis suggests that the spatial pattern of the shrub community was not significantly structured by interspecific facilitation. This result supports growing evidence for balanced species patterns of adult plants in multispecies communities. Our approach may be used in other communities to describe complex multispecies spatial patterns, quantify species‐specific associations with diversity patterns, and to generate hypotheses regarding relationships between patterns and community‐structuring processes.  相似文献   

3.
The research was conducted in two natural forest communities: Potentillo albae-Quercetum (oak forest) which allows much light to reach the forest floor and Tilio-Carpinetum typicum (hornbeam forest) which shades the herb layer heavily. The seed banks were estimated from numbers of seedlings emerging from soil samples over one growing season.(1) Our results confirm the hypothesis that persistent seed banks are mainly formed by species with high light requirements. Of the species found predominantly in the seed bank and absent from the herb layer or occurring there very rarely in both communities 83% of species and 70% of seedlings were strongly light-demanding (Ellenberg's light index 6–9). However, the results do not support the hypothesis that seed banks in natural deciduous forest communities are small, poor in species and do not reflect the species composition of herb layer.(2) The seed banks of both communities were rich in species and relatively large. Species richness in the oak forest turned out to be higher than in the hornbeam forest (51 vs 45 species/2.4 m2), but size was smaller (2659 vs 5789 seedlings/2.4 m2). In the oak forest the most abundant species in the seed bank was Galium boreale, but it constituted only 19% of the total number of seedlings, whereas in the hornbearn forest the dominant species, Urtica dioica, constituted 57% of the total.(3) In each community the species composition of the seed bank and the herb layer was very similar (>70%).(4) The seed bank was more diverse in the oak forest than in the hornbeam forest (H 2.34 vs 1.68).(5) The seed banks of both communities differed in the contribution of species with varied light requirements; in the sunny oak forest species with high light requirements dominated, whereas in the shady hornbeam forest both strongly and moderately light-demanding species had similar contributions.Nomenclature: Follows Ehrendorfer (1973) and Matuszkiewicz (1981).  相似文献   

4.
Mangan SA  Eom AH  Adler GH  Yavitt JB  Herre EA 《Oecologia》2004,141(4):687-700
It is now understood that alterations in the species composition of soil organisms can lead to changes in aboveground communities. In this study, we assessed the importance of spatial scale and forest size on changes in arbuscular mycorrhizal fungal (AMF) spore communities by sampling AMF spores in soils of forested mainland and island sites in the vicinity of Gatun Lake, Republic of Panama. We encountered a total of 27 AMF species or morphospecies, with 17, 8, 1 and 1 from the genera Glomus, Acaulospora, Sclerosystis, and Scutellospora, respectively. At small scales (<100 m2), we found little evidence for spatial structuring of AMF communities (decay of Morisita-Horn community similarity with distance). However, at large spatial scales, we found that the AMF spore community of a mainland plot was more similar to other mainland plots several kilometers (>5) away than to nearby island plots (within 0.7 km). Likewise, most island plots were more similar to other island plots regardless of geographic separation. There was no decay in AMF species richness (number of species), or Shannon diversity (number of species and their spore numbers) either with decreasing forest-fragment size, or with decreasing plant species richness. Of the six most common species that composed almost 70% of the total spore volume, spores of Glomus tsh and G. clavisporum were more common in soils of mainland plots, while spores of Glomus small brown and Acaulospora mellea were more abundant in soils of island plots. None of these common AMF species showed significant associations with soil chemistry or plant diversity. We suggest that the convergence of common species found in AMF spore communities in soils of similar forest sizes was a result of forest fragmentation. Habitat-dependent convergence of AMF spore communities may result in differential survival of tree seedlings regenerating on islands versus mainland.  相似文献   

5.
刘璐  刘志成  杨瑞莹  张任菲  李豪  许晓明 《生态学报》2020,40(24):9129-9137
为探究永定河干涸段河流廊道的植物群落结构特征及多样性特征,给永定河河道防护林、水源涵养林建设等提供科学的理论依据,通过对河流廊道植物群落的实地调查,对124个植物群落进行了TWINSPAN数量分类,并探究了不同层次间的物种多样性的区别以及垂直和水平梯度上的分布格局。结果表明:(1)植物群落包括9种群丛类型,其中优势群丛为"狗尾草+猪毛菜+尖头叶藜群丛"、"狗尾草群丛"和"加杨-狗尾草+蒺藜群丛"。(2)草本层物种的丰富程度和均匀程度整体大于乔木层,且物种组成复杂程度的变化幅度更大。(3)从垂直梯度上看,植物群落乔木层上游的物种结构组成较下游更加丰富、整体分布更加均匀,草本层从上游到下游物种组成的丰富程度和均匀程度先降低后升高、再降低;从水平梯度上看,越靠近左、右两堤,乔木层的物种结构组成越丰富、分布越均匀,左堤的物种组成较右堤更加复杂且分布更加均匀,草本层的物种多样性在水平梯度上变化较大,在靠近左堤的位置物种组成最丰富。影响乔木层物种多样性变化的主要原因是人类活动干扰的强度。  相似文献   

6.
Two 1 ha plots of a Southern Brazilian subtropical riverine forest, subject to different frequency and duration of floods, were compared to detect the differences in physiognomic structure, tree community composition, richness and diversity. Each plot was made up of 100 contiguous 10×10 m subplots, where 3451 trees with pbh 15 cm were measured and identified. The survey observed 30 tree species, in the frequently flooded plot and 48 in the occasionally flooded plot. A detailed topographical and soil survey was carried out in both plots and indicated that the levels of organic matter and most mineral nutrients were higher in the frequently flooded stand. The forest understory was denser in the occasionally flooded stand which also showed taller emergent trees. Multivariate ordination and grouping techniques showed that the species’ abundance distribution was strongly related to the topographical variation. There was a clear pattern of species turnover according to topographic position, indicating that tree species developed different abilities to survive flooding events. As a result, the two plots also differed in their tree frequency per species regeneration, vertical distribution and dispersion groups. Both species richness and diversity decreased with increasing flood frequency, also showing a patchy distribution within both stands. At a local scale, flooding regime is regulating the spatial variation of α-diversity by forming different seral stages of predictable species composition. Compared to regularly flooded riverine and floodplain forests, riverine forests, with unpredictable flooding regimes, may show higher diversity at a local scale and more abundant opportunistic species of high environmental plasticity.  相似文献   

7.
K. P. Able  B. R. Noon 《Oecologia》1976,26(3):275-294
Summary Breeding birds were censused along four elevational gradients in the Adirondack Mountains, New York, and the Green Mountains, Vermont. The bird communities of the four gradients were basically similar in species composition, richness and amplitude patterns. Three measures of species diversity decreased with increasing elevation. Low-elevation communities contained higher proportions of rare species and the relative abundances conformed to the broken-stick distribution. At higher elevations the communities showed greater dominance and the dominance-diversity curves approached geometric series. The species characteristic of high-elevation communities had the broadest altitudinal distributions.The upper and lower distributional limits of most species were independent of one another except at ecotones where marked changes in vegetation structure occurred. On each mountain, slightly more than half of the species limits coincided with ecotones. This is a significantly greater proportion than has been found in similar studies of tropical forest bird communities. In further contrast to tropical communities, we found no convincing cases of altitudinal competitive exclusion between species. Interspecific competition in the past seems to have been translated primarily into differences in habitat selection by temperate forest birds.Many of the differences between temperate forest breeding bird communities and tropical ones can be understood in terms of the migratory nature of most of the temperate species and the lower species richness in temperature forests.  相似文献   

8.
Miserendino  Maria Laura 《Hydrobiologia》2001,444(1-3):147-158
Macroinvertebrate communities from 29 streams and rivers of the mountain and the Andean Patagonian Plateau were analyzed. Samples were collected from six river basins, which were part of four different biozones of the Patagonian Ecoregion. Samples from mountain streams were dominated by Plecoptera, Ephemeroptera, Trichoptera and Diptera, while plateau rivers where mainly Diptera, Oligochaeta and Mollusca. Total invertebrate abundance ranged from 7 to 12249 ind.m–2. Elmidae, Paratrichocladius, Chironomus, Smicridea annulicornis, Parasericostoma ovale and Meridialaris laminata were the most abundant insect taxa, while Nais communis and Hyalella curvispina were the most abundant non-insect taxa. Species-environmental relationships were examined using Canonical Correspondence Analysis. Current speed, conductivity, substrate size and abundance of aquatic plants, were identified as the major variables structuring faunal assemblages. Regression analyses revealed that species richness was negatively correlated with latitude, and positively correlated with water temperature and altitude. Macroivertebrate abundance increased with conductivity, altitude and water temperature. These results suggest that habitat heterogeneity was the strongest predictor of macroinvertebrate assemblages, but species richness could be predicted at a landscape scale using topographical and climatic features.  相似文献   

9.
Testing the relations between tree parameters and the richness and composition of lichen communities in near-natural stands could be a first step to gather information for forest managers interested in conservation and in biodiversity assessment and monitoring. This work aims at evaluating the influence of tree age and age-related parameters on tree-level richness and community composition of lichens on spruce in an Alpine forest. The lichen survey was carried out in four sites used for long-term monitoring. In each site, tree age, diameter at breast height, tree height, the first branch height, and crown projection area were measured for each tree. Trees were stratified into three age classes: (1) <100 years old, immature trees usually not suitable for felling, (2) 100–200 years old, mature trees suitable for felling, and (3) >200 years old, over-mature trees normally rare or absent in managed stands. In each site, seven trees in each age class were selected randomly. Tree age and related parameters proved to influence both tree-level species richness and composition of lichen communities. Species richness increased with tree age and related parameters indicative of tree size. This relation could be interpreted as the result of different joint effects of age per se and tree size with its area-effect. Species turnover is also suspected to improve species richness on over-mature trees. Similarly to species richness, tree-level species composition can be partially explained by tree-related parameters. Species composition changed from young to old trees, several lichens being associated with over-mature trees. This pool of species, including nationally rare lichens, represents a community which is probably poorly developed in managed forests. In accordance to the general aims of near-to-nature forestry, the presence of over-mature trees should be enhanced in the future forest landscape of the Alps especially in protected areas and Natura 2,000 sites, where conservation purposes are explicitly included in the management guidelines.  相似文献   

10.
Theoretical models predict that effects of dispersal on local biodiversity are influenced by the size and composition of the species pool, as well as ecological filters that limit local species membership. We tested these predictions by conducting a meta-analysis of 28 studies encompassing 62 experiments examining effects of propagule supply (seed arrival) on plant species richness under contrasting intensities of ecological filters (owing to disturbance and resource availability). Seed arrival increased local species richness in a wide range of communities (forest, grassland, montane, savanna, wetland), resulting in a positive mean effect size across experiments. Mean effect size was 70% higher in disturbed relative to undisturbed communities, suggesting that disturbance increases recruitment opportunities for immigrating species. In contrast, effect size was not significantly influenced by nutrient or water availability. Among seed-addition experiments, effect size was positively correlated with species and functional diversity within the pool of added seeds (species evenness and seed-size diversity), primarily in disturbed communities. Our analysis provides experimental support for the general hypothesis that species pools and local environmental heterogeneity interactively structure plant communities. We highlight empirical gaps that can be addressed by future experiments and discuss implications for community assembly, species coexistence, and the maintenance of biodiversity.  相似文献   

11.
South East Asia is widely regarded as a centre of threatened biodiversity owing to extensive logging and forest conversion to agriculture. In particular, forests degraded by repeated rounds of intensive logging are viewed as having little conservation value and are afforded meagre protection from conversion to oil palm. Here, we determine the biological value of such heavily degraded forests by comparing leaf-litter ant communities in unlogged (natural) and twice-logged forests in Sabah, Borneo. We accounted for impacts of logging on habitat heterogeneity by comparing species richness and composition at four nested spatial scales, and examining how species richness was partitioned across the landscape in each habitat. We found that twice-logged forest had fewer species occurrences, lower species richness at small spatial scales and altered species composition compared with natural forests. However, over 80 per cent of species found in unlogged forest were detected within twice-logged forest. Moreover, greater species turnover among sites in twice-logged forest resulted in identical species richness between habitats at the largest spatial scale. While two intensive logging cycles have negative impacts on ant communities, these degraded forests clearly provide important habitat for numerous species and preventing their conversion to oil palm and other crops should be a conservation priority.  相似文献   

12.
According to the equilibrium theory of island biogeography, high colonization ability of species is associated with low exponents (z) of the species–area relationship (SAR) and weak spatial patterns in species number and dissimilarity. However, the relationship between z and the strength of these spatial patterns has not been investigated systematically. We used a multispecies metapopulation model to investigate these relationships in an archipelago of islands. We conclude that this relationship can only be predicted if either the dispersal ability or the power of establishment of species is known. With species richness limited by establishment, we generated high z‐values associated with weak spatial patterns in species number and dissimilarity. If species richness was constrained by the dispersal ability of species, we observed low to medium z‐values but strong spatial patterns. If the dispersal ability and the abilities of species to establish were both high, z‐values and spatial pattern tend to be low and species numbers were limited by the size of the regional species pool.  相似文献   

13.
Aim  We aim to assess the impact of forest fragmentation on lepidopteran larval community and study the associations of microclimate and tree community with lepidopteran assemblage.
Location  Kibale National Park, Uganda.
Methods  We investigated the effects of forest fragmentation on leaf herbivory, density of lepidopteran caterpillars, species richness and diversity as well as the composition of herbivorous lepidopteran larval community. Microclimate, size of the fragment, distance to the continuous forest, and tree diversity were studied as possible explanatory factors. We sampled 10 Neoboutonia macrocalyx Pax. (Euphorbiaceae) trees in each fragment during dry and rainy season, total of four times, in a year to cover the seasonal variation.
Results  The rates of herbivory, total larval density and species richness were significantly lower in the forest fragments than in the continuous forest but species diversity expressed as Fisher's alpha did not differ. The dominance structure and community composition of the larval communities in the fragments was different from that of the continuous forest. None of the differences we observed were related to the fragment area or distance to the continuous forest. Instead, we found an indication of association between the herbivore and the tree communities. The fragments had significantly lower humidity during most of the day and higher temperature during the afternoons (14–17 h), which might partially explain the differences in lepidopteran larval communities.
Main conclusions  Decreased larval density and species richness as well as differences in the community composition and structure all highlight the importance of large continuous forest areas for maintaining larval biodiversity.  相似文献   

14.
The relationship between local and regional diversity was tested by regressing local community richness against regional species diversity for three taxa, birds, butterflies and mammals, in subtropical forest. The quadratic model best fits the relationship between local and regional diversity for birds. Local bird species richness is theoretically independent of the size of the regional pool of species and may represent saturated communities. A linear model best describes the relationship for mammals and butterflies. For mammals, the slope is shallow (0.264) and regional richness overestimates local species richness, suggesting communities are undersaturated. Extinction filtering may explain this pattern. Past climatic changes have filtered out many mammalian species, these changes have been too recent for autochthanous speciation, and the relatively low vagility of mammals has prevented extensive recolonisation. Differences in the nature of the diversity relationship between taxa are as much due to independent evolutionary histories as to differences in vagility and colonising potential. A pervasive role is suggested for regional biogeographic processes in the development of faunal assemblage structure. Large-scale processes are not considered in current conservation plans. We encourage the shift of conservation emphasis from local ecological processes and species interactions, to whole communities and consideration of regional processes.  相似文献   

15.
Temperate semi-natural grasslands are known for their high plant species richness at small spatial scales. We examined the variation in small-scale species richness in a sample of 63 sites from Swedish semi-natural grasslands, located as fragments in the modem landscape dominated by forest and agricultural land. Data were obtained from two spatial scales at each site. 1 dm2 and 4 m2. Using an analysis based on a Monte Carlo simulation, we found support for the species-pool hypothesis: a high species richness at the I dm- scale was associated with high species richness at the 4 m2 scale. The conclusion from this pattern analysis would, however, be considerably strengthened if we could reduce the likelihood that other mechanisms than sampling from species pools of unequal size influence the pattern of small-scale species richness. Additional analyses were made in order to identify such mechanisms. We examined whether four putative key traits: seed size, seed production, plant size and reproductive allocation were different among species at comparatively species-rich vs species-poor I dm' plots. We found only a little evidence for such differences. There was a weak tendency that species in the plots with high species richness possessed larger (and fewer) seeds than species from species-poor plots. Our results are congruent with the main prediction of the species pool model: variation in small-scale species richness (1 dm2- scale) is basically a result of sampling from unequally sized community species pools (4 m2 scale). Variation in species richness between the 4 nr semi-natural grassland "patches" may thus be sought for among mechanisms operating al larger spatial scales than 4 m2. We briefly discuss such mechanisms, based on other studies performed in the same study area.  相似文献   

16.
Diversity and similarity of butterfly communities were assessed in five different habitat types (from natural closed forest to agricultural lands) in the mountains of Tam Dao National Park, Vietnam for 3 years from 2002 to 2004. The line transect count was used to record species richness and abundance of butterfly communities in the different habitat types. For each habitat, the number of species and individuals, and indices of species richness, evenness and diversity of butterfly communities were calculated. The results indicated that species richness and abundance of butterfly communities were low in the natural closed forest, higher in the disturbed forest, highest in the forest edge, lower in the shrub habitat and lowest in the agricultural lands. The indices of species richness, evenness and diversity of butterfly communities were low in agricultural lands and natural closed forest but highest in the forest edge and shrub habitats. The families Satyridae and Amathusiidae have the greatest species richness and abundance in the natural closed forest, with a reduction in their species richness and abundance from the natural closed forest to the agricultural lands. Species composition of butterfly communities was different among five different habitat types (40%), was similar in habitats outside the forest (68%) and was similar in habitats inside the forest (63%). Diversity and abundance of butterfly communities are not different between the natural closed forest and the agriculture lands, but species composition changed greatly between these habitat types. A positive correlation between the size of species geographical distribution range and increasing habitat disturbance was found. The most characteristic natural closed forest species have the smallest geographical distribution range.  相似文献   

17.
Aims Forest fragmentation and the associated augmentation of forest edge zones are increasing worldwide. Forest edges are characterized by altered plant species richness and community composition. As the tree layer and its species composition has been shown to influence herb layer composition, changes in tree species composition or richness may weaken or strengthen edge effects in forest ecosystems. We studied effects of the edge–center transition, tree species composition and their potential interaction on the understory vegetation in the Hainich National Park, Germany's largest connected deciduous forest, allowing to cover large edge–center transects.Methods We established 12 transects in an area of 75 km 2 of continuous forest, 6 beech-dominated and 6 in multispecies forest stands. Each transect reached from the forest edge up to 500 m into the forest interior. Vegetation relevés were conducted in regular, logarithmic distances along each transect.Important findings Herb species richness was influenced by an interaction of edge effects and tree diversity level. With increasing distance from the forest edge, herb species richness remained constant in multispecies forest stands but rapidly decreased in beech-dominated forest stands. Further, herb richness was higher in the interior of multispecies forest stands. Percent forest specialists increased and percent generalists decreased with distance from the edge and this contrasting pattern was much more pronounced in beech-dominated transects. By using structural equation modeling, we identified litter depth mediated by tree species composition as the most important driver of herb layer plant species richness.  相似文献   

18.
贺兰山木本植物群落物种多样性的海拔格局   总被引:15,自引:1,他引:15       下载免费PDF全文
 贺兰山位于中国温带草原和温带荒漠的过渡带,是研究干旱区山地物种多样性海拔格局的理想区域。该文通过样方法调查研究区的森林和灌丛群落,并运用广义可加模型分析物种多样性的海拔分布格局。结果表明:1)海拔是物种丰富度的重要影响因子,一般能解释原始数据30%~40%的变差。2)对于森林和灌丛群落,草本植物都是群落中比例最高的物种, 而且决定了群落总物种丰富度的海拔分布格局。3)森林群落的乔木层物种丰富度在中海拔区域最高,反映了中海拔区域相对优越的水热条件。灌木层和草本层的物种丰富度明显受到乔木层郁闭度的影响,有随海拔升高而降低的趋势。4)灌丛群落的灌木层和草本层物种丰富度均呈单峰格局,皆因低海拔的干旱和高海拔的寒冷抑制了多数物种的生存,仅气候条件适宜的中海拔区域能够生存丰富的物种。  相似文献   

19.
Models and data used to describe species–area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species–area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species‐level Poisson processes and estimate patch‐level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early‐successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species–area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density–area relationships and occurrence probability–area relationships can alter the form of species–area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a variety of study designs and allows the inclusion of additional environmental covariates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号