首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a strategy related to intragenic suppression, we previously obtained evidence for structural interactions in the voltage sensor of Shaker K(+) channels between residues E283 in S2 and R368 and R371 in S4 (Tiwari-Woodruff, S.K., C.T. Schulteis, A.F. Mock, and D. M. Papazian. 1997. Biophys. J. 72:1489-1500). Because R368 and R371 are involved in the conformational changes that accompany voltage-dependent activation, we tested the hypothesis that these S4 residues interact with E283 in S2 in a subset of the conformational states that make up the activation pathway in Shaker channels. First, the location of residue 283 at hyperpolarized and depolarized potentials was inferred by substituting a cysteine at that position and determining its reactivity with hydrophilic, sulfhydryl-specific probes. The results indicate that position 283 reacts with extracellularly applied sulfhydryl reagents with similar rates at both hyperpolarized and depolarized potentials. We conclude that E283 is located near the extracellular surface of the protein in both resting and activated conformations. Second, we studied the functional phenotypes of double charge reversal mutations between positions 283 and 368 and between 283 and 371 to gain insight into the conformations in which these positions approach each other most closely. We found that combining charge reversal mutations at positions 283 and 371 stabilized an activated conformation of the channel, and dramatically slowed transitions into and out of this state. In contrast, charge reversal mutations at positions 283 and 368 stabilized a closed conformation, which by virtue of the inferred position of 368 corresponds to a partially activated (intermediate) closed conformation. From these results, we propose a preliminary model for the rearrangement of structural interactions of the voltage sensor during activation of Shaker K(+) channels.  相似文献   

2.
Myers MP  Khanna R  Lee EJ  Papazian DM 《FEBS letters》2004,568(1-3):110-116
In Shaker K(+) channels, formation of an electrostatic interaction between two charged residues, D316 and K374 in transmembrane segments S3 and S4, respectively, is a key step in voltage sensor biogenesis. Mutations D316K and K374E disrupt formation of the voltage sensor and lead to endoplasmic reticulum retention. We have now investigated the fates of these misfolded proteins. Both are significantly less stable than the wild-type protein. D316K is degraded by cytoplasmic proteasomes, whereas K374E is degraded by a lactacystin-insensitive, non-proteasomal pathway. Our results suggest that the D316K and K374E proteins are misfolded in recognizably different ways, an observation with implications for voltage sensor biogenesis.  相似文献   

3.
To investigate of the gating properties in the voltage-activated potassium channel, we have mutated a variety of S2 and S4 residues in the Shaker potassium protein. Results showed that the R365C and R368C, but not the E283C, R362C, R365S, R368S or the ShB-IR, were sensitive to micromolar concentrations of Cd(2+) ions. This indicates that R365 and R368 play a crucial role in the channel gating due to a conformational modulation of the channel structure. Doubly mutated channels of the E283C/R365E and E283C/R368E caused a transient increase in current amplitude, which reached a peak within a few seconds and then decreased toward initial levels, despite the continual presence of Cd(2+). Taken together, our results suggest that E283, R365, and R368 form a network of strong, local, and electrostatic interactions that relate closely to the mechanism of the channel gating.  相似文献   

4.
The voltage-sensing domain of voltage-gated channels is comprised of four transmembrane helices (S1–S4), with conserved positively charged residues in S4 moving across the membrane in response to changes in transmembrane voltage. Although it has been shown that positive charges in S4 interact with negative countercharges in S2 and S3 to facilitate protein maturation, how these electrostatic interactions participate in channel gating remains unclear. We studied a mutation in Kv7.1 (also known as KCNQ1 or KvLQT1) channels associated with long QT syndrome (E1K in S2) and found that reversal of the charge at E1 eliminates macroscopic current without inhibiting protein trafficking to the membrane. Pairing E1R with individual charge reversal mutations of arginines in S4 (R1–R4) can restore current, demonstrating that R1–R4 interact with E1. After mutating E1 to cysteine, we probed E1C with charged methanethiosulfonate (MTS) reagents. MTS reagents could not modify E1C in the absence of KCNE1. With KCNE1, (2-sulfonatoethyl) MTS (MTSES) could modify E1C, but [2-(trimethylammonium)ethyl] MTS (MTSET)+ could not, confirming the presence of a positively charged environment around E1C that allows approach by MTSES but repels MTSET+. We could change the local electrostatic environment of E1C by making charge reversal and/or neutralization mutations of R1 and R4, such that MTSET+ modified these constructs depending on activation states of the voltage sensor. Our results confirm the interaction between E1 and the fourth arginine in S4 (R4) predicted from open-state crystal structures of Kv channels and reveal an E1–R1 interaction in the resting state. Thus, E1 engages in electrostatic interactions with arginines in S4 sequentially during the gating movement of S4. These electrostatic interactions contribute energetically to voltage-dependent gating and are important in setting the limits for S4 movement.  相似文献   

5.
Voltage-sensor domains couple membrane potential to conformational changes in voltage-gated ion channels and phosphatases. Highly coevolved acidic and aromatic side chains assist the transfer of cationic side chains across the transmembrane electric field during voltage sensing. We investigated the functional contribution of negative electrostatic potentials from these residues to channel gating and voltage sensing with unnatural amino acid mutagenesis, electrophysiology, voltage-clamp fluorometry and ab initio calculations. The data show that neutralization of two conserved acidic side chains in transmembrane segments S2 and S3, namely Glu293 and Asp316 in Shaker potassium channels, has little functional effect on conductance-voltage relationships, although Glu293 appears to catalyze S4 movement. Our results suggest that neither Glu293 nor Asp316 engages in electrostatic state-dependent charge-charge interactions with S4, likely because they occupy, and possibly help create, a water-filled vestibule.  相似文献   

6.
The heritable muscle disorder hypokalemic periodic paralysis (HypoPP) is characterized by attacks of flaccid weakness, brought on by sustained sarcolemmal depolarization. HypoPP is genetically linked to missense mutations at charged residues in the S4 voltage-sensing segments of either CaV1.1 (the skeletal muscle L-type Ca(2+) channel) or NaV1.4 (the skeletal muscle voltage-gated Na(+) channel). Although these mutations alter the gating of both channels, these functional defects have proven insufficient to explain the sarcolemmal depolarization in affected muscle. Recent insight into the topology of the S4 voltage-sensing domain has aroused interest in an alternative pathomechanism, wherein HypoPP mutations might generate an aberrant ionic leak conductance by unblocking the putative aqueous crevice ("gating-pore") in which the S4 segment resides. We tested the rat isoform of NaV1.4 harboring the HypoPP mutation R663H (human R669H ortholog) at the outermost arginine of S4 in domain II for a gating-pore conductance. We found that the mutation R663H permits transmembrane permeation of protons, but not larger cations, similar to the conductance displayed by histidine substitution at Shaker K(+) channel S4 sites. These results are consistent with the notion that the outermost charged residue in the DIIS4 segment is simultaneously accessible to the cytoplasmic and extracellular spaces when the voltage sensor is positioned inwardly. The predicted magnitude of this proton leak in mature skeletal muscle is small relative to the resting K(+) and Cl(-) conductances, and is thus not likely to fully account for the aberrant sarcolemmal depolarization underlying the paralytic attacks. Rather, it is possible that a sustained proton leak may contribute to instability of V(REST) indirectly, for instance, by interfering with intracellular pH homeostasis.  相似文献   

7.
Voltage-gated potassium channels are transmembrane proteins made up of four subunits, each comprising six transmembrane (S1-S6) segments. S1-S4 form the voltage-sensing domain and S5-S6 the pore domain with its central pore. The sensor domain detects membrane depolarization and transmits the signal to the activation gates situated in the pore domain, thereby leading to channel opening. An understanding of the mechanism by which the sensor communicates the signal to the pore requires knowledge of the structure of the interface between the voltage-sensing and pore domains. Toward this end, we have introduced single cysteine mutations into the extracellular end of S4 (positions 356 and 357) in conjunction with a cysteine in S5 (position 418) of the Shaker channel and expressed the mutants in Xenopus oocytes. We then examined the propensity of each pair of engineered cysteines to form a metal bridge or a disulfide bridge, respectively, by examining the effect of Cd2+ ions and copper phenanthroline on the K+ conductance of a whole oocyte. Both reagents reduced currents through the S357C,E418C double mutant channel, presumably by restricting the movements necessary for coupling the voltage-sensing function to pore opening. This inhibitory effect was seen in the closed state of the channel and with heteromers composed of S357C and E418C single mutant subunits; no effect was seen with homomers of any of the single mutant channels. These data indicate that the extracellular end of S4 lies in close proximity to the extracellular end of the S5 of the neighboring subunit in closed channels.  相似文献   

8.
The highly conserved fourth transmembrane segment (S4) is the primary voltage sensor of the voltage-dependent channel and would move outward upon membrane depolarization. S4 comprises repetitive amino acid triads, each containing one basic (presumably charged and voltage-sensing) followed by two hydrophobic residues. We showed that the triad organization is functionally extended into the S3-4 linker right external to S4 in Shaker K(+) channels. The arginine (and lysine) substitutes for the third and the sixth residues (Ala-359 and Met-356, respectively) external to the outmost basic residue (Arg-362) in S4 dramatically and additively stabilize S4 in the resting conformation. Also, Leu-361 and Leu-358 play a very similar role in stabilization of S4 in the resting position, presumably by their hydrophobic side chains. Moreover, the double mutation A359R/E283A leads to a partially extruded position of S4 and consequently prominent closed-state inactivation, suggesting that Glu-283 in S2 may coordinate with the arginines in the extruded S4 upon depolarization. We conclude that the triad organization extends into the S3-4 linker for about six amino acids in terms of their microenvironment. These approximately six residues should retain the same helical structure as S4, and their microenvironment serves as part of the "gating canal" accommodating the extruding S4. Upon depolarization, S4 most likely moves initially as a sliding helix and follows the path that is set by the approximately six residues in the S3-4 linker in the resting state, whereas further S4 translocation could be more like, for example, a paddle, without orderly coordination from the contiguous surroundings.  相似文献   

9.
Voltage-gated ion channels couple conformational change(s) of the voltage-sensing domain to those of the opening of an intracellular gate to allow ionic conduction. Much larger positive potentials are required to couple these conformational changes to the opening of the gate of Shaker K(+) channels with the concurrent mutations V369I, I372L, and S376T (ILT) at the N-terminal end of the S4 segment. We used cut-open oocyte voltage clamp to study the biophysical and thermodynamical properties of heterotetrameric concatemerized channels with different stoichiometries of ILT mutations. The voltage-sensing domains of ILT mutant channels require smaller depolarization to activate but their intracellular gate does not immediately follow the movement of the voltage-sensing domain, requiring larger depolarization to open. Our results demonstrate that each subunit contributes equally to the rightward shift of the conductance-voltage relationship and that a single ILT-containing subunit is sufficient to induce a large enthalpic and entropic barrier, limiting opening of the intracellular gate.  相似文献   

10.
The molecular and biophysical mechanisms by which voltage-sensitive K+ (Kv)4 channels inactivate and recover from inactivation are presently unresolved. There is a general consensus, however, that Shaker-like N- and P/C-type mechanisms are likely not involved. Kv4 channels also display prominent inactivation from preactivated closed states [closed-state inactivation (CSI)], a process that appears to be absent in Shaker channels. As in Shaker channels, voltage sensitivity in Kv4 channels is thought to be conferred by positively charged residues localized to the fourth transmembrane segment (S4) of the voltage-sensing domain. To investigate the role of S4 positive charge in Kv4.3 gating transitions, we analyzed the effects of charge elimination at each positively charged arginine (R) residue by mutation to the uncharged residue alanine (A). We first demonstrated that R290A, R293A, R296A, and R302A mutants each alter basic activation characteristics consistent with positive charge removal. We then found strong evidence that recovery from inactivation is coupled to deactivation, showed that the precise location of the arginine residues within S4 plays an important role in the degree of development of CSI and recovery from CSI, and demonstrated that the development of CSI can be sequentially uncoupled from activation by R296A, specifically. Taken together, these results extend our current understanding of Kv4.3 gating transitions. voltage-sensitive potassium channel; Shaker; closed-state inactivation  相似文献   

11.
The voltage sensor of the Shaker potassium channel is comprised mostly of positively charged residues in the putative fourth transmembrane segment, S4 (Aggarwal, S.K., and R. MacKinnon. 1996. Neuron. 16:1169-1177; Seoh, S.-A., D. Sigg, D.M. Papazian, and F. Bezanilla. 1996. Neuron. 16:1159-1167). Movement of the voltage sensor in response to a change in the membrane potential was examined indirectly by measuring how the accessibilities of residues in and around the sensor change with voltage. Each basic residue in the S4 segment was individually replaced with a histidine. If the histidine tag is part of the voltage sensor, then the gating charge displaced by the voltage sensor will include the histidine charge. Accessibility of the histidine to the bulk solution was therefore monitored as pH-dependent changes in the gating currents evoked by membrane potential pulses. Histidine scanning mutagenesis has several advantages over other similar techniques. Since histidine accessibility is detected by labeling with solution protons, very confined local environments can be resolved and labeling introduces minimal interference of voltage sensor motion. After histidine replacement of either residue K374 or R377, there was no titration of the gating currents with internal or external pH, indicating that these residues do not move in the transmembrane electric field or that they are always inaccessible. Histidine replacement of residues R365, R368, and R371, on the other hand, showed that each of these residues traverses entirely from internal exposure at hyperpolarized potentials to external exposure at depolarized potentials. This translocation enables the histidine to transport protons across the membrane in the presence of a pH gradient. In the case of 371H, depolarization drives the histidine to a position that forms a proton pore. Kinetic models of titrateable voltage sensors that account for proton transport and conduction are presented. Finally, the results presented here are incorporated into existing information to propose a model of voltage sensor movement and structure.  相似文献   

12.
The S4 transmembrane domain of the family of voltage-gated ion channels is generally thought to be the voltage sensor, whose translocation by an applied electric field produces the gating current. Experiments on hSkMI Na(+) channels and both Shaker and EAG K(+) channels indicate which S4 residues cross the membrane-solution interface during activation gating. Using this structural information, we derive the steady-state properties of gating-charge transfer for wild-type and mutant Shaker K(+) channels. Assuming that the energetics of gating is dominated by electrostatic forces between S4 charges and countercharges on neighboring transmembrane domains, we calculate the total energy as a function of transmembrane displacement and twist of the S4 domain. The resulting electrostatic energy surface exhibits a series of deep energy minima, corresponding to the transition states of the gating process. The steady-state gating-charge distribution is then given by a Boltzmann distribution among the transition states. The resulting gating-charge distributions are compared to experimental results on wild-type and charge-neutralized mutants of the Shaker K(+) channel.  相似文献   

13.
Tombola F  Pathak MM  Isacoff EY 《Neuron》2005,45(3):379-388
Voltage-gated ion channels sense voltage by shuttling arginine residues located in the S4 segment across the membrane electric field. The molecular pathway for this arginine permeation is not understood, nor is the filtering mechanism that permits passage of charged arginines but excludes solution ions. We find that substituting the first S4 arginine with smaller amino acids opens a high-conductance pathway for solution cations in the Shaker K(+) channel at rest. The cationic current does not flow through the central K(+) pore and is influenced by mutation of a conserved residue in S2, suggesting that it flows through a protein pathway within the voltage-sensing domain. The current can be carried by guanidinium ions, suggesting that this is the pathway for transmembrane arginine permeation. We propose that when S4 moves it ratchets between conformations in which one arginine after another occupies and occludes to ions the narrowest part of this pathway.  相似文献   

14.
Role of charged residues in the S1-S4 voltage sensor of BK channels   总被引:1,自引:0,他引:1       下载免费PDF全文
The activation of large conductance Ca(2+)-activated (BK) potassium channels is weakly voltage dependent compared to Shaker and other voltage-gated K(+) (K(V)) channels. Yet BK and K(V) channels share many conserved charged residues in transmembrane segments S1-S4. We mutated these residues individually in mSlo1 BK channels to determine their role in voltage gating, and characterized the voltage dependence of steady-state activation (P(o)) and I(K) kinetics (tau(I(K))) over an extended voltage range in 0-50 microM [Ca(2+)](i). mSlo1 contains several positively charged arginines in S4, but only one (R213) together with residues in S2 (D153, R167) and S3 (D186) are potentially voltage sensing based on the ability of charge-altering mutations to reduce the maximal voltage dependence of P(O). The voltage dependence of P(O) and tau(I(K)) at extreme negative potentials was also reduced, implying that the closed-open conformational change and voltage sensor activation share a common source of gating charge. Although the position of charged residues in the BK and K(V) channel sequence appears conserved, the distribution of voltage-sensing residues is not. Thus the weak voltage dependence of BK channel activation does not merely reflect a lack of charge but likely differences with respect to K(V) channels in the position and movement of charged residues within the electric field. Although mutation of most sites in S1-S4 did not reduce gating charge, they often altered the equilibrium constant for voltage sensor activation. In particular, neutralization of R207 or R210 in S4 stabilizes the activated state by 3-7 kcal mol(-1), indicating a strong contribution of non-voltage-sensing residues to channel function, consistent with their participation in state-dependent salt bridge interactions. Mutations in S4 and S3 (R210E, D186A, and E180A) also unexpectedly weakened the allosteric coupling of voltage sensor activation to channel opening. The implications of our findings for BK channel voltage gating and general mechanisms of voltage sensor activation are discussed.  相似文献   

15.
Voltage-activated potassium (K(v)) channels contain a central pore domain that is partially surrounded by four voltage-sensing domains. Recent X-ray structures suggest that the two domains lack extensive protein-protein contacts within presumed transmembrane regions, but whether this is the case for functional channels embedded in lipid membranes remains to be tested. We investigated domain interactions in the Shaker K(v) channel by systematically mutating the pore domain and assessing tolerance by examining channel maturation, S4 gating charge movement, and channel opening. When mapped onto the X-ray structure of the K(v)1.2 channel the large number of permissive mutations support the notion of relatively independent domains, consistent with crystallographic studies. Inspection of the maps also identifies portions of the interface where residues are sensitive to mutation, an external cluster where mutations hinder voltage sensor activation, and an internal cluster where domain interactions between S4 and S5 helices from adjacent subunits appear crucial for the concerted opening transition.  相似文献   

16.
The vanilloid transient receptor potential channel TRPV1 is a tetrameric six-transmembrane segment (S1-S6) channel that can be synergistically activated by various proalgesic agents such as capsaicin, protons, heat, or highly depolarizing voltages, and also by 2-aminoethoxydiphenyl borate (2-APB), a common activator of the related thermally gated vanilloid TRP channels TRPV1, TRPV2, and TRPV3. In these channels, the conserved charged residues in the intracellular S4-S5 region have been proposed to constitute part of a voltage sensor that acts in concert with other stimuli to regulate channel activation. The molecular basis of this gating event is poorly understood. We mutated charged residues all along the S4 and the S4-S5 linker of TRPV1 and identified four potential voltage-sensing residues (Arg(557), Glu(570), Asp(576), and Arg(579)) that, when specifically mutated, altered the functionality of the channel with respect to voltage, capsaicin, heat, 2-APB, and/or their interactions in different ways. The nonfunctional charge-reversing mutations R557E and R579E were partially rescued by the charge-swapping mutations R557E/E570R and D576R/R579E, indicating that electrostatic interactions contribute to allosteric coupling between the voltage-, temperature- and capsaicin-dependent activation mechanisms. The mutant K571E was normal in all aspects of TRPV1 activation except for 2-APB, revealing the specific role of Lys(571) in chemical sensitivity. Surprisingly, substitutions at homologous residues in TRPV2 or TRPV3 had no effect on temperature- and 2-APB-induced activity. Thus, the charged residues in S4 and the S4-S5 linker contribute to voltage sensing in TRPV1 and, despite their highly conserved nature, regulate the temperature and chemical gating in the various TRPV channels in different ways.  相似文献   

17.
Six transmembrane segments, S1-S6, cluster around the central pore-forming region in voltage-gated K+ channels. To investigate the structural characteristics of the S2 segment in the Shaker K+ channel, we replaced each residue in S2 singly with tryptophan (or with alanine for the native tryptophan). All but one of the 23 Trp mutants expressed voltage-dependent K+ currents in Xenopus oocytes. The effects of the mutations were classified as being of low or high impact on channel gating properties. The periodicity evident in the effects of these mutations supports an alpha-helical structure for the S2 segment. The high- and low-impact residues cluster onto opposite faces of a helical wheel projection of the S2 segment. The low-impact face is also tolerant of single mutations to asparagine. All results are consistent with the idea that the low-impact face projects toward membrane lipids and that changes in S2 packing occur upon channel opening. We conclude that the S2 segment is a transmembrane alpha helix and that the high-impact face packs against other transmembrane segments in the functional channel.  相似文献   

18.
Dipeptidyl aminopeptidase-like proteins (DPLPs) interact with Kv4 channels and thereby induce a profound remodeling of activation and inactivation gating. DPLPs are constitutive components of the neuronal Kv4 channel complex, and recent observations have suggested the critical functional role of the single transmembrane segment of these proteins (Zagha, E., A. Ozaita, S.Y. Chang, M.S. Nadal, U. Lin, M.J. Saganich, T. McCormack, K.O. Akinsanya, S.Y. Qi, and B. Rudy. 2005. J. Biol. Chem. 280:18853-18861). However, the underlying mechanism of action is unknown. We hypothesized that a unique interaction between the Kv4.2 channel and a DPLP found in brain (DPPX-S) may remodel the channel's voltage-sensing domain. To test this hypothesis, we implemented a robust experimental system to measure Kv4.2 gating currents and study gating charge dynamics in the absence and presence of DPPX-S. The results demonstrated that coexpression of Kv4.2 and DPPX-S causes a -26 mV parallel shift in the gating charge-voltage (Q-V) relationship. This shift is associated with faster outward movements of the gating charge over a broad range of relevant membrane potentials and accelerated gating charge return upon repolarization. In sharp contrast, DPPX-S had no effect on gating charge movements of the Shaker B Kv channel. We propose that DPPX-S destabilizes resting and intermediate states in the voltage-dependent activation pathway, which promotes the outward gating charge movement. The remodeling of gating charge dynamics may involve specific protein-protein interactions of the DPPX-S's transmembrane segment with the voltage-sensing and pore domains of the Kv4.2 channel. This mechanism may determine the characteristic fast operation of neuronal Kv4 channels in the subthreshold range of membrane potentials.  相似文献   

19.
The voltage sensor is a four-transmembrane helix bundle (S1-S4) that couples changes in membrane potential to conformational alterations in voltage-gated ion channels leading to pore opening and ion conductance. Although the structure of the voltage sensor in activated potassium channels is available, the conformation of the voltage sensor at rest is still obscure, limiting our understanding of the voltage-sensing mechanism. By employing a heterologously expressed Bacillus halodurans sodium channel (NaChBac), we defined constraints that affect the positioning and depolarization-induced outward motion of the S4 segment. We compared macroscopic currents mediated by NaChBac and mutants in which E43 on the S1 segment and the two outermost arginines (R1 and R2) on S4 were substituted. Neutralization of the negatively charged E43 (E43C) had a significant effect on channel gating. A double-mutant cycle analysis of E43 and R1 or R2 suggested changes in pairing during channel activation, implying that the interaction of E43 with R1 stabilizes the voltage sensor in its closed/available state, whereas interaction of E43 with R2 stabilizes the channel open/unavailable state. These constraints on S4 dynamics that define its stepwise movement upon channel activation and positioning at rest are novel, to the best of our knowledge, and compatible with the helical-screw and electrostatic models of S4 motion.  相似文献   

20.
Voltage sensor domains (VSD) are transmembrane proteins that respond to changes in membrane voltage and modulate the activity of ion channels, enzymes, or in the case of proton channels allow permeation of protons across the cell membrane. VSDs consist of four transmembrane segments, S1-S4, forming an antiparallel helical bundle. The S4 segment contains several positively charged residues, mainly arginines, located at every third position along the helix. In the voltage-gated Shaker K(+) channel, the mutation of the first arginine of S4 to a smaller uncharged amino acid allows permeation of cations through the VSD. These currents, known as ω-currents, pass through the VSD and are distinct from K(+) currents passing through the main ion conduction pore. Here we report molecular dynamics simulations of the ω-current in the resting-state conformation for Kv1.2 and for four of its mutants. The four tested mutants exhibit various degrees of conductivity for K(+) and Cl(-) ions, with a slight selectivity for K(+) over Cl(-). Analysis of the ion permeation pathway, in the case of a highly conductive mutant, reveals a negatively charged constriction region near the center of the membrane that might act as a selectivity filter to prevent permeation of anions through the pore. The residues R1 in S4 and E1 in S2 are located at the narrowest region of the ω-pore for the resting state conformation of the VSD, in agreement with experiments showing that the largest increase in current is produced by the double mutation E1D and R1S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号