首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pentamidine is a second-line agent used in the treatment of leishmaniasis and its mode of action and mechanism of resistance is not well understood. It was previously demonstrated that transfection of promastigotes and amastigotes with the ABC transporter PRP1 gene confers resistance to pentamidine. To further clarify this point, we generated Leishmania amazonensis mutants resistant to pentamidine. Our results indicated that this ABC transporter is not associated with pentamidine resistance in lines generated by drug pressure through amplification or overexpression mechanisms of PRP1 gene.  相似文献   

2.
The parasitic protozoan Leishmania (Leishmania) amazonensis alternates between mammalian and insect hosts. In the insect host, the parasites proliferate as procyclic promastigotes and then differentiate into metacyclic infective forms. The meta 1 gene is preferentially expressed during metacyclogenesis. Meta 1 expression profile determination along parasite growth curves revealed that the meta 1 mRNA level peaked at the early stationary phase then decreased to an intermediate level. No correlation was observed between meta 1 expression and infectivity. Conversely, infectivity correlated with the increase of apoptotic cells in the late stationary phase.  相似文献   

3.
Apoptosis and/or programmed cell death have been described in examples ranging from fungi to man as gene-regulated processes with roles in cell and tissue physiopathology. These processes require the operation of an intercellular communicating network able to deliver alternative signals for cells with different fates and is thus considered a prerogative of multicellular organisms. Promastigotes from Leishmania (Leishmania) amazonensis, when shifted from their optimal in vitro growth temperature (22°C) to the temperature of the mammalian host (37°C), die by a calcium-modulated mechanism. More parasites die in the presence of this ion than in its absence, as detected by a colorimetric assay based on the activity of mitochondrial and cytoplasmic dehydrogenases which measures cell death, independently of the process by which it occurs. A heat shock, unable to induce detectable parasite death (34°C for 1 h), is able to significantly raise the concentration of intracellular free calcium in these cells. Heat-shocked parasites present ultrastructural and molecular features characteristic of cells dying by apoptosis. Morphological changes, observed only in the presence of calcium, are mainly nuclear. Cytoplasmic organelles are preserved. Heat shock is also able to induce DNA cleavage into an oligonucleosomal ladder detected in agarose gels by ethidium bromide staining and autoradiography of [α32P]ddATP-labeled fragments. These results indicate that death by apoptosis is not exclusive of multicellular organisms. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The effect of oxidants and the anti-inflammatory steroid dexamethasone on the attachment and internalization of virulent and avirulent Leishmania donovani promastigotes by the macrophage mannosyl fucosyl receptor was examined. Oxidants and dexamethasone are known to down- and upregulate the expression of the mannose receptor. Macrophages, when treated with 500 microM H2O2 at 37 C for 30 min, stimulate about 45% inhibition in uptake of an avirulent strain (UR6), and 30 and 25% inhibition for virulent strains AG-83 and GE-I, respectively. Treatment of macrophages with dexamethasone for 20 hr resulted in a stimulation in uptake of the parasite. When UR6 was used, a 3-fold increase in uptake was observed compared with the controls. Parasite uptake was also inhibited by the H2O2-generating system, glucose/glucose oxidase; inhibition was blocked by catalase. Treatment of macrophages either with H2O2 or dexamethasone did not affect the binding of the advanced glycosylation end product-bovine serum albumin (AGE-BSA), the ligand for AGE receptor of macrophages. Similarly, indirect evidence also shows that both types 1 and 3 complement receptors (CR1, CR3) are not affected by these treatments, indicating that, besides the mannosyl fucosyl receptor, other receptors are minimally altered in the identified condition. These results suggest that the up- and downregulation of the mannose receptor of macrophages may play a role in affecting L. donovani infection.  相似文献   

5.
Four distinct bands of cysteine proteinase activity were detected when stationary-phase populations of Leishmania mexicana mexicana were subjected to gelatin-SDS-PAGE. The highest mobility band contained at least three isoforms separable by mono Q anion exchange chromatography. These high mobility activities were distinct from all the major amastigote enzymes. Stationary-phase promastigote populations also contained two acid-activable precursor forms of the promastigote-specific band. It is suggested that these promastigote-specific activities occur in the infective metacyclic stage of the parasite and may have a role in parasite survival upon inoculation into a mammal.  相似文献   

6.
Here we report the subcellular localization of an intracellular serine protease of 68 kDa in axenic promastigotes of Leishmania (Leishmania) amazonensis, using subcellular fractionation, enzymatic assays, immunoblotting, and immunocytochemistry. All fractions were evaluated by transmission electron microscopy and the serine protease activity was measured during the cell fractionation procedure using alpha-N-r-tosyl-L-arginine methyl ester (L-TAME) as substrate, phenylmethylsulphone fluoride (PMSF) and L-1-tosylamino-2-phenylethylchloromethylketone (TPCK) as specific inhibitors. The enzymatic activity was detected mainly in a membranous vesicular fraction (6.5-fold enrichment relative to the whole homogenate), but also in a crude plasma membrane fraction (2.0-fold). Analysis by SDS-PAGE gelatin under reducing conditions demonstrated that the major proteolytic activity was found in a 68 kDa protein in all fractions studied. A protein with identical molecular weight was also recognized in immunoblots by a polyclonal antibody against serine protease (anti-SP), with higher immunoreactivity in the vesicular fraction. Electron microscopic immunolocalization using the same polyclonal antibody showed the enzyme present at the cell surface, as well as in cytoplasmic membranous compartments of the parasite. Our findings indicate that the internal location of this serine protease in L. amazonensis is mainly restricted to the membranes of intracellular compartments resembling endocytic/exocytic elements.  相似文献   

7.
In the current study, we evaluated the mechanism of action of miltefosine, which is the first effective and safe oral treatment for visceral leishmaniasis, in Leishmania amazonensis promastigotes. Miltefosine induced a process of programmed cell death, which was determined by the externalization of phosphatidylserine, the incorporation of propidium iodide, cell-cycle arrest at the sub-G0/G1 phase and DNA fragmentation into oligonucleosome-sized fragments. Despite the intrinsic variation that is detected in Leishmania spp, our results indicate that miltefosine causes apoptosis-like death in L. amazonensis promastigote cells using a similar process that is observed in Leishmania donovani.  相似文献   

8.
In the present study, we evaluated the effects of hyperbaric oxygen (HBO) exposure in both Leishmania amazonensis life stages (promastigotes and amastigotes) and on macrophage cultures infected with the parasite. HBO treatment protocols, which can be tolerated by humans and animals, induced irreversible metabolic damage and affected parasite morphology, growth and ability to transform. The observation that the antioxidant N-acetylcysteine (NAC) prevents some of these deleterious effects indicated an involvement of oxidative stress during parasite HBO exposure. In addition, HBO exposed L. amazonensis-infected macrophage cultures showed reduction of the percentage of infected cells and of the number of intracellular parasites per cell. Thus, the demonstration that HBO, a therapy used in the management of different diseases, is toxic for both L. amazonensis life stages and can alter macrophage susceptibility to the infection encourages further studies of this therapy in animal models of Leishmania infection.  相似文献   

9.
Rabbit serum against the cysteine-proteinases papain has been employed for the cellular localization of cysteine-proteinases of in Leishmania amazonensis promastigotes. By immunocytochemistry, immune complexes were found in the plasma membrane and in the flagella pocket of the parasite. The antiserum immunoprecipitated major iodinated proteins with molecular masses of 66, 45, 28 and 24 kDa and a wide partitioning of the Triton X-114 detergent phase. The presence of cysteine-proteinase at the cell surface membrane was also suggested by the detection of proteolytic activity in living cells (19.0 microg azocasein min(-1) 10(-7) promastigotes (1.0 S.D. )).  相似文献   

10.
The polypeptides of Leishmania mexicana mexicana (M379), L. m. amazonensis (LV78), L. major (LV39) and L. d. donovani (LV39) amastigotes and cultured promastigotes have been analysed by SDS-polyacrylamide gel electrophoresis. The polypeptide banding patterns of the promastigotes of the four species were quite similar, but distinct differences were detected between those of amastigotes. The results suggest that the various species of Leishmania are adapted differently for survival and growth in the mammalian host. The polypeptides of L. m. mexicana amastigotes were very rapidly hydrolysed unless protected by the cysteine proteinase inhibitor leupeptin.  相似文献   

11.
ABSTRACT. Leishmania spp. are the causative agents of leishmaniasis, a complex of diseases with a broad spectrum of clinical manifestations. Leishmania (Leishmania) amazonensis is a main etiological agent of diffuse cutaneous leishmaniasis. Leishmania spp., as other trypanosomatids, possess a metabolism based significantly on the consumption of amino acids. However, the transport of amino acids in these organisms remains poorly understood with few exceptions. Glutamate transport is an important biological process in many organisms. In the present work, the transport of glutamate is characterized. This process is performed by a single kinetic system (Km=0.59±0.04 mM, Vmax=0.123±0.003 nmol/min per 20 × 106 cells) showing an energy of activation of 52.38±4.7 kJ/mol and was shown to be partially inhibited by analogues, such as glutamine, aspartate, α‐ketoglutarate and oxaloacetate, methionine, and alanine. The transport activity was sensitive to the extracellular concentration of H+ but not to Na+ or K+. However, unlike other amino acid transporters presently characterized, the treatment with specific ionophores confirmed the participation of a K+, and not H+ membrane gradient in the transport process.  相似文献   

12.
In this study we show that protein tyrosine kinases (PTKs) and also protein tyrosine phosphatases are involved in the uptake of virulent and avirulent Leishmania donovani promastigotes by macrophage cells. Protein tyrosine kinase inhibitors such as genistein or tyrphostin 25 decrease parasite uptake in a dose-dependent manner. Addition of sodium orthovanadate, a protein tyrosine phosphatase inhibitor, prior to infection significantly increases parasite internalization. A similar uptake profile was observed with both virulent and avirulent L. donovani promastigotes. Treatment of macrophages with cytochalasin B, an inhibitor of actin polymerization prevents promastigote uptake, indicating that a tyrosine kinase induced actin polymerization signal may be necessary for the entry of the parasites. In contrast, neither genistein nor tyrphostin significantly reduce intracellular replication of this pathogen or nitric oxide production, suggesting that the PTK-mediated signal is not related to the ultimate virulence mechanism associated with intracellular replication of this pathogen. These data collectively suggest that protein tyrosine kinase mediated entry of L. donovani promastigotes into macrophages is not a virulence-associated event.  相似文献   

13.
Leishmania parasites survive despite exposure to the toxic nitrosative oxidants during phagocytosis by the host cell. In this work, the authors investigated comparatively the resistance of Leishmania amazonensis promastigotes and axenic amastigotes to a relatively strong nitrosating agent that acts as a nitric oxide (NO) donor, sodium nitroprusside (SNP). Results demonstrate that SNP is able to decrease, in vitro, the number of L. amazonensis promastigotes and axenic amastigotes in a dose-dependent maner. Promastigotes, cultured in the presence of 0.25, 0.5, and 1 mmol L(-1) SNP for 24 h showed about 75% growth inhibition, and 97-100% when the cultures were treated with >2 mmol L(-1) SNP. In contrast, when axenic amastigotes were growing in the presence of 0.25-8 mM SNP added to the culture medium, 50% was the maximum of growth inhibition observed. Treated promastigotes presented reduced motility and became round in shape further confirming the leishmanicidal activity of SNP. On the other hand, axenic amastigotes, besides being much more resistant to SNP-mediated cytotoxicity, did not show marked morphological alteration when incubated for 24 h, until 8 mM concentrations of this nitrosating agent were used. The cytotoxicity toward L. amazonensis was attenuated by reduced glutathione (GSH), supporting the view that SNP-mediated toxicity triggered multiple oxidative mechanisms, including oxidation of thiols groups and metal-independent oxidation of biomolecules to free radical intermediates.  相似文献   

14.
Two Leishmania membrane glycoconjugates, gp63 and lipophosphoglycan, have been implicated in parasite attachment and uptake into the host macrophage. Moreover, recent data suggest that parasite virulence is associated with high expression of gp63. In this study we have surveyed gp63 gene copy number, in addition to the level of expression of gp63 mRNA and protein in several Leishmania major isolates, as well as virulent and avirulent strains and clones. The highest level of gp63 expression was found in the avirulent cloned line LRC-L119.3G7, which expresses about a 15-fold higher level of gp63 RNA and protein than the virulent cloned line LRC-L137/7/V121, suggesting that large amounts of gp63 are not sufficient for infectivity and do not correlate with virulence. L119.3G7 has eight copies of the gp63 gene compared to five copies in the virulent cloned line V121 and its parental virulent isolate LRC-L137. A series of avirulent clones derived from LRC-L137 also had five copies of the gene, suggesting that gp63 copy number is maintained among closely related parasites. Different virulent isolates of L. major from different geographic regions exhibited six copies of the gp63 gene. The variation in total gene copy number is due to different numbers of the tandemly repeated gp63 isogene in different strains. Our data show that there is wide variability between strains of L. major in the copy number of gp63 genes as well as in the amount of RNA and protein expressed.  相似文献   

15.
In this paper we show that murine lung conditioned medium (LCM) displays, in addition to its already described colony-stimulating activity on bone marrow cells, a potent growth-stimulating activity on promastigotes of Leishmania mexicana amazonesis. Immunoprecipitation of LCM with an antibody specific for murine granulocyte-macrophage colony stimulating factor (GM-CSF) abrogates both activities, indicating that the leishmanial growth-promoting activity is due to the presence of GM-CSF on LCM. Furthermore, recombinant GM-CSF (rGM-CSF) added to the culture medium or to the immunoprecipitated LCM is able to respectively induce or to partially recover the growth-promoting activity of the LCM. Sequential in vitro passages of the parasite induces a progressive loss of sensitivity to the growth-factor. Parasite forms recently collected from lesions are significantly more responsive to the growth-factor than forms already adapted to grow in culture. Since it has been shown that several different microorganisms display receptors for vertebrate-like hormones and that GM-CSF is able to enhance a cutaneous leishmanial lesion, our results permit us to raise the hypothesis that a direct interaction between a host-derived hormone and a pathogenic microorganism can be of importance in defining the fate of an infection. The fact that GM-CSF is produced by cells that actively participate in a leishmanial infection (T-lymphocytes and macrophages) reinforces our hypothesis.  相似文献   

16.
Living Leishmania amazonensis amastigotes were incubated with radioiodinated N-benzyloxycarbonyl-L-tyrosyl-L-alanyl diazomethane (Z-Tyr-AlaCHN2), an irreversible inhibitor of mammalian cathepsins B and L. Parasite lysates were subjected to electrophoresis in gelatin-containing sodium dodecyl sulfate-acrylamide gels to detect regions of proteolytic activity, and the distribution of the inhibitor was ascertained by autoradiography. Of the three main bands of proteolysis associated with cysteine proteinases, two, with apparent molecular weights of 28 and 31 kDa, were shown to be labeled. The third enzyme activity, detected at the 35-kDa region in substrate gels, was only faintly labeled. The distribution of labeled bands was similar when lysates of untreated parasites were electrophoresed and the gels incubated with the radioiodinated inhibitor. Under reducing conditions, the inhibitor bound to polypeptides of 29, 31, 32, and 34 kDa, of which the first and the last were the most intensely labeled. Polypeptides with the same apparent molecular weights were labeled when amastigote lysates were incubated with the 125I inhibitor. Uptake of radioactivity by the parasites was time and concentration-dependent and more than 80% of the total counts could be precipitated with trichloroacetic acid. Radioactivity associated with the amastigotes was quite stable after they were pulsed with labeled inhibitor and chased for up to 24 hr in inhibitor-free medium. Both total uptake and labeling of cysteine proteinases were markedly reduced in parasites preincubated with Z-Phe-AlaCHN2 prior to exposure to Z-Tyr(125I)-AlaCHN2. However, more radioiodinated inhibitor was taken up by parasites preincubated with cold inhibitor and chased in inhibitor-free medium, suggesting de novo synthesis or processing of inactive enzyme precursors.  相似文献   

17.
Leishmaniasis chemotherapy is a bottleneck in disease treatment. Although available, chemotherapy is limited, toxic, painful, and does not lead to parasite clearance, with parasite resistance also being reported. Therefore, new therapeutic options are being investigated, such as plant-derived anti-parasitic compounds. Amentoflavone is the most common biflavonoid in the Selaginella genus, and its antileishmanial activity has already been described on Leishmania amazonensis intracellular amastigotes but its direct action on the parasite is controversial. In this work we demonstrate that amentoflavone is active on L. amazonensis promastigotes (IC50 = 28.5 ± 2.0 μM) and amastigotes. Transmission electron microscopy of amentoflavone-treated promastigotes showed myelin-like figures, autophagosomes as well as enlarged mitochondria. Treated parasites also presented multiple lipid droplets and altered basal body organization. Similarly, intracellular amastigotes presented swollen mitochondria, membrane fragments in the lumen of the flagellar pocket as well as autophagic vacuoles. Flow cytometric analysis after TMRE staining showed that amentoflavone strongly decreased mitochondrial membrane potential. In silico analysis shows that amentoflavone physic-chemical, drug-likeness and bioavailability characteristics suggest it might be suitable for oral administration. We concluded that amentoflavone presents a direct effect on L. amazonensis parasites, causing mitochondrial dysfunction and parasite killing. Therefore, all results point for the potential of amentoflavone as a promising candidate for conducting advanced studies for the development of drugs against leishmaniasis.  相似文献   

18.
In parasites such as Leishmania, the study of molecular events induced in response to heat stress is of immense interest since temperature increase is an integral part of the life cycle. Protein phosphorylation is known to control major steps of proliferation and differentiation in eukaryotic cells. Studies on intracellular signaling systems in protozoa are relatively recent. We have examined the effect of heat shock on the protein phosphorylation status in promastigotes of Leishmania donovani. The patterns of total protein phosphorylation and specific phosphorylation at tyrosine residues were examined using [32P]-orthophosphate labelling of the parasites and immunoblotting with a monoclonal anti-phosphotyrosine antibody. The major proteins of L. donovani that were phosphorylated at 24 degrees C had apparent molecular weights of 110, 105, 66-68, 55, 36-40 and 20 kDa. Heat shock (from 24 to 37 degrees C) led to a significant decrease in phosphorylation of the majority of phosphoproteins in the virulent promastigotes. On the other hand, the avirulent promastigotes did not show any decrease in protein phosphorylation on exposure to heat stress. Predominant phosphorylation at tyrosine residues was detectable in proteins of putative size 105-110 kDa in both virulent and avirulent parasites. Heat shock led to a reduction in the level of phosphotyrosine in both these proteins in the case of virulent parasites, while no such reduction was detectable in avirulent parasites. Significant modifications in the phosphorylation status of proteins in response to heat stress including that of tyrosine containing proteins, observed exclusively in virulent parasites, suggest that modulation of protein phosphorylation/dephosphorylation may play a role in signal transduction pathways in the parasite upon heat shock encountered on entering the mammalian host.  相似文献   

19.
Pathogenic protozoan proteases play crucial roles in the host-parasite interaction, and its characterization contributes to the understanding of protozoan disease mechanisms. A Leishmania amazonensis promastigote protease was purified 36-fold, using aprotinin-agarose affinity chromatography and gel filtration high performance liquid chromatography, yielding a total recovery of 49%. The molecular mass of active enzyme obtained from native gel filtration HPLC and SDS-PAGE under conditions of reduction and non-reduction was 68 kDa, suggesting that the enzyme may exist as a monomer. The protease isoelectric point (pI) was around 4.45 and, as demonstrated by deglycosylation assay, it did not have any carbohydrate content. The optimal pH and temperature of the enzyme were 8.0 and 28 degrees C, respectively, determined using alpha-N-rho-tosyl-L-arginyl-methyl ester (L-TAME) as substrate. Assays of thermal stability indicated that 50% of the enzymatic activity was preserved after 4 min of pre-treatment at 42 degrees C and after 24 h of pre-treatment at 37 degrees C, both in the absence of substrate. Hemoglobin, bovine serum albumin (BSA), ovalbumin, and both gelatin and peptide substrates containing arginine in ester bound were hydrolyzed by 68 kDa protease. The insulin beta-chain was also hydrolyzed by the protease, and four peptidic bonds (L11-V12, E13-A14, L15-Y16, and Y16-L17) were susceptible to the 68-kDa protease action. Inhibition studies suggested that the enzyme belonged to a serine protease class inhibited by calcium ions and activated by manganese ions. These findings demonstrate that the L. amazonensis 68-kDa serine protease differs from those of other protozoan parasites.  相似文献   

20.
Telomeres are DNA-protein complexes that protect linear chromosomes from degradation and fusions. Telomeric DNA is repetitive and G-rich, and protrudes towards the end of the chromosomes as 3'G-overhangs. In Leishmania spp., sequences adjacent to telomeres comprise the Leishmania conserved telomere associated sequences (LCTAS) that are around 100 bp long and contain two conserved sequence elements (CSB1 and CSB2), in addition to non-conserved sequences. The aim of this work was to study the genomic organization of Leishmania (Leishmania) amazonensis telomeric/subtelomeric sequences. Leishmania amazonensis chromosomes were separated in a single Pulsed Field Gel Electrophoresis (PFGE) gel as 25 ethidium bromide-stained bands. All of the bands hybridized with the telomeric probe (5'-TTAGGG-3')3 and with probes generated from the conserved subtelomeric elements (CSB1, CSB2). Terminal restriction fragments (TRF) of L. amazonensis chromosomes were analyzed by hybridizing restriction digested genomic DNA and chromosomal DNA separated in 2D-PFGE with the telomeric probe. The L. amazonensis TRF was estimated to be approximately 3.3 kb long and the telomeres were polymorphic and ranged in size from 0.2 to 1.0 kb. Afa I restriction sites within the conserved CSB1 elements released the telomeres from the rest of the chromosome. Bal 31-sensitive analysis confirmed the presence of terminal Afa I restriction sites and served to differentiate telomeric fragments from interstitial internal sequences. The size of the L. amazonensis 3' G-overhang was estimated by non-denaturing Southern blotting to be approximately 12 nt long. Using similar approaches, the subtelomeric domains CSB1 and CSB2 were found to be present in a low copy number compared to telomeres and were organized in blocks of 0.3-1.5 kb flanked by Hinf I and Hae III restriction sites. A model for the organization of L. amazonensis chromosomal ends is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号