首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inosine is a potent primary stimulus of insulin secretion from isolated mouse islets. The inosine-induced insulin secretion was totally depressed during starvation, but was completely restored by the addition of 5 mM-caffeine to the medium and partially restored by the addition of 5 mM-glucose. Mannoheptulose (3 mg/ml) potentiated the effect of 10 mM-inosine in islets from fed mice. The mechanism of the stimulatory effect of inosine was further investigated, and it was demonstrated that pancreatic islets contain a nucleoside phosphorylase capable of converting inosine into hypoxanthine and ribose 1-phosphate. Inosine at 10 mM concentration increased the lactate production and the content of ATP, glucose 6-phosphate (fructose 1,6-diphosphate + triose phosphates) and cyclic AMP in islets from fed mice. In islets from starved mice inosine-induced lactate production was decreased and no change in the concentration of cyclic AMP could be demonstrated, whereas the concentration of ATP and glucose 6-phosphate rose. Inosine (10 mM) induced a higher concentration of (fructose 1,6-diphosphate + triose phosphates) in islets from starved mice than in islets from fed mice suggesting that in starvation the activities of glyceraldehyde 3-phosphate dehydrogenase or other enzymes below this step in glycolysis are decreased. Formation of glucose from inosine was negligible. Inosine had no direct effect on adenylate cyclase activity in islet homogenates. The observed changes in insulin secretion and islet metabolism mimic what is seen when glucose and glyceraldehyde stimulate insulin secretion, and as neither ribose nor hypoxanthine-stimulated insulin release, the results are interpreted as supporting the substrate-site hypothesis for glucose-induced insulin secretion according to which glucose has to be metabolized in the beta-cells before secretion is initiated.  相似文献   

2.
Isolated rat pancreatic islets were incubated at 3.3 (low) and 16.7 (high) mM glucose with different concentrations of the phosphotyrosine phosphatase (PTP) inhibitor, peroxovanadate (pV). At low glucose, pV stimulated insulin secretion 2- to 4-fold, but it inhibited insulin secretion at 16.7 mM. The latter effect was not due to an inhibition of glucose metabolism, nor was it inhibited by pertussis toxin pretreatment. In addition, pV stimulated insulin secretion approximately 3-fold in depolarized cells at both low and high glucose. pV markedly increased the tyrosine phosphorylation of several proteins, including IRS-1 and -2, and also increased the phosphorylation of the downstream kinases PKB/Akt and MAPK. PKB/Akt, but not MAPK, was also phosphorylated in the absence of pV. Intracellular pV-stimulated tyrosine phosphorylation, including that of IRS-2, was generally increased by high glucose suggesting a further inhibition of PTP and/or enhanced tyrosine kinase activity. Thus, these data suggest that intracellular tyrosine and serine (PKB/Akt) phosphorylation are related to insulin secretion but they do not support a unique and direct link between IRS-2 tyrosine phosphorylation and glucose-stimulated insulin secretion.  相似文献   

3.
Activation of SOCS-3 by resistin   总被引:44,自引:0,他引:44       下载免费PDF全文
Resistin is an adipocyte hormone that modulates glucose homeostasis. Here we show that in 3T3-L1 adipocytes, resistin attenuates multiple effects of insulin, including insulin receptor (IR) phosphorylation, IR substrate 1 (IRS-1) phosphorylation, phosphatidylinositol-3-kinase (PI3K) activation, phosphatidylinositol triphosphate production, and activation of protein kinase B/Akt. Remarkably, resistin treatment markedly induces the gene expression of suppressor of cytokine signaling 3 (SOCS-3), a known inhibitor of insulin signaling. The 50% effective dose for resistin induction of SOCS-3 is approximately 20 ng/ml, close to levels of resistin in serum. Association of SOCS-3 protein with the IR is also increased by resistin. Inhibition of SOCS function prevented resistin from antagonizing insulin action in adipocytes. SOCS-3 induction is the first cellular effect of resistin that is independent of insulin and is a likely mediator of resistin's inhibitory effect on insulin signaling in adipocytes.  相似文献   

4.
The functional role of glutamate decarboxylase (GAD) and its product GABA in pancreatic islets has remained elusive. Mouse beta-cells express the larger isoform GAD67, whereas human islets express only the smaller isoform GAD65. We have generated two lines of transgenic mice expressing human GAD65 in pancreatic beta-cells (RIP7-hGAD65, Lines 1 and 2) to study the effect that GABA generated by this isoform has on islet cell function. The ascending order of hGAD65 expression and/or activity in beta-cells was Line 1 heterozygotes < Line 2 heterozygotes < Line 1 homozygotes. Line 1 heterozygotes have normal glucose tolerance, whereas Line 1 homozygotes and Line 2 heterozygotes exhibit impaired glucose tolerance and inhibition of insulin secretion in vivo in response to glucose. In addition, fasting levels of blood glucose are elevated and insulin is decreased in Line 1 homozygotes. Pancreas perfusion experiments suggest that GABA generated by GAD65 may function as a negative regulator of first-phase insulin secretion in response to glucose by affecting a step proximal to or at the K(ATP)(+) channel.  相似文献   

5.
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance.  相似文献   

6.
Dual action of adiponectin on insulin secretion in insulin-resistant mice   总被引:13,自引:0,他引:13  
Adiponectin is secreted by adipocytes and has been implicated as a mediator of insulin sensitivity. In this study, the acute effects of adiponectin on islets isolated from normal or diet-induced insulin resistant mice were examined. In normal islets, adiponectin (5 microg/ml) had no significant effect on insulin secretion. In contrast, in islets from mice rendered insulin resistant by high-fat feeding, adiponectin inhibited insulin secretion at 2.8 mM (P < 0.01) but augmented insulin secretion at 16.7 mM glucose (P < 0.05). The augmentation of glucose-stimulated insulin secretion by adiponectin was accompanied by increased glucose oxidation (P < 0.005), but without any significant effect on palmitate oxidation or the islet ATP/ADP ratio. Furthermore, RT-PCR revealed the expression of the adiponectin receptor AdipoR1 mRNA in mouse islets, however, with no difference in the degree of expression level between the two feeding groups. The results thus uncover a potential dual role for adiponectin to modify insulin secretion in insulin resistance.  相似文献   

7.
Microdissected beta-cell-rich pancreatic islets of non-inbred ob/ob mice were used in studies of how perchlorate (CIO4-) affects stimulus-secretion coupling in beta-cells. CIO4- at 16 mM potentiated D-glucose-induced insulin release, without inducing secretion at non-stimulatory glucose concentrations. The potentiation mainly applied to the first phase of stimulated insulin release. In the presence of 20 mM-glucose, the half-maximum effect of CIO4- was reached at 5.5 mM and maximum effect at 12 mM of the anion. The potentiation was reversible and inhibitable by D-mannoheptulose (20 mM) or Ca2+ deficiency. CIO4- at 1-8 mM did not affect glucose oxidation. The effects on secretion were paralleled by a potentiation of glucose-induced 45Ca2+ influx during 3 min. K+-induced insulin secretion and 45Ca2+ uptake were potentiated by 8-16 mM-CIO4-. The spontaneous inactivation of K+-induced (20.9 mM-K+) insulin release was delayed by 8 mM-CIO4-. The anion potentiated the 45Ca2+ uptake induced by glibenclamide, which is known to depolarize the beta-cell. Insulin release was not affected by 1-10 mM-trichloroacetate. It is suggested that CIO4- stimulates the beta-cell by affecting the gating of voltage-controlled Ca2+ channels.  相似文献   

8.
To study molecular mechanisms for glucosamine-induced insulin resistance, we induced complete and reversible insulin resistance in 3T3-L1 adipocytes with glucosamine in a dose- and time-dependent manner (maximal effects at 50 mM glucosamine after 6 h). In these cells, glucosamine impaired insulin-stimulated GLUT-4 translocation. Glucosamine (6 h) did not affect insulin-stimulated tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 and -2 and weakly, if at all, impaired insulin stimulation of phosphatidylinositol 3-kinase. Glucosamine, however, severely impaired insulin stimulation of Akt. Inhibition of insulin-stimulated glucose transport was correlated with that of Akt activity. In these cells, glucosamine also inhibited insulin stimulation of p70 S6 kinase. Glucosamine did not alter basal glucose transport and insulin stimulation of GLUT-1 translocation and mitogen-activated protein kinase. In summary, glucosamine induced complete and reversible insulin resistance in 3T3-L1 adipocytes. This insulin resistance was accompanied by impaired insulin stimulation of GLUT-4 translocation and Akt activity, without significant impairment of upstream molecules in insulin-signaling pathway.  相似文献   

9.
In the present study, we evaluated the autocrine modulatory effect of insulin on glucose metabolism and glucose-induced insulin secretion in islets isolated from hamsters with insulin resistance (IR) induced by administration of a sucrose-rich diet (SRD) during 5 weeks. We used an approach of two metabolic pathways (glucose oxidation and utilization) based on the measurement of 14CO2 and 3H2O production from D-[U-14C]-glucose and D-[5-(3)H]-glucose, respectively, in isolated islets incubated with 3.3 and 16.7 mM glucose alone, or with 5 or 15 mU/ml insulin, anti-insulin guinea-pig serum (1:500), 25 microM nifedipine, or 150 nM wortmannin. Insulin release was measured by radioimmunoassay in islets incubated with 3.3 or 16.7 mM glucose, with or without 75, 150, and 300 nM wortmannin. Results showed that the stimulatory effect of insulin upon 14CO2 and 3H2O production in control islets was not observed in SRD islets. Addition of anti-insulin serum, nifedipine or wortmannin to the medium with 16.7 mM glucose decreased 14CO2 and 3H2O production in control but not in SRD islets. Whereas wortmannin did not decrease insulin release induced by 16.7 mM glucose in SRD hamsters, it did in controls. We can conclude that the autocrine stimulatory effect of insulin upon glucose metabolism observed in normal islets is attenuated or even absent in islets from IR animals. Such decreased islet sensitivity to insulin did not prevent the compensatory secretion of insulin from maintaining glucose homeostasis, suggesting that, at least in this model, the islets can put forward alternative mechanisms to overcome such defect.  相似文献   

10.
11.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) regulates several cellular functions, but its physiological role in pancreatic islet cells remains to be investigated. In this study, we confirmed the presence of PPAR-gamma in rat isolated islets and examined its role on insulin and glucagon secretion by using PPAR-gamma-overexpressed islets. PPAR-gamma overexpression significantly suppressed insulin secretion induced by stimulatory concentration of glucose (p<0.05). In addition, insulin secretion evoked by high potassium depolarization also was significantly decreased from PPAR-gamma-overexpressed islets (p<0.05). On the other hand, no significant change in glucagon release was observed after high potassium depolarization between PPAR-gamma-overexpressed and control islets. Insulin and glucagon content in islets was not statistically different between the two groups. In addition, the expression of uncoupling protein-2 (UCP-2) was found to be induced in PPAR-gamma-overexpressed islets. This result clearly indicates that the deteriorative effect of PPAR-gamma overexpression on the secretory machinery is selective for pancreatic beta-cells. And it is possible that its site of action can be located in the energy-consuming exocytotic process of insulin secretory granules, and that the reduction of ATP production through increased UCP-2 reduces insulin exocytosis.  相似文献   

12.
Perifused isolated rat islets were used to show that biotin plus 16.5 mM glucose evoked more insulin secretion than 16.5 mM glucose alone. Whether or not this reinforcement of glucose-induced insulin secretion by biotin is unique was studied by using perifused islets stimulated with 16.5 mM glucose plus 100 microM of one of various components of the vitamin B group. No effect of any of these vitamins was found on glucose-induced insulin secretion. These results indicate that biotin is unique among the members of the vitamin B group in enhancing glucose-induced insulin secretion. Static incubation experiments showed that biotin did not potentiate insulin release when the islets were incubated with an experimental solution containing either no or 2.8 mM glucose. The addition of biotin to 27.7 mM glucose, which is the maximal concentration for stimulating insulin release, did not significantly enhance the effect of the glucose on insulin release (although it did at 16.5 mM glucose). These findings indicate that biotin, by itself, does not stimulate insulin secretion, and does not enhance glucose-induced insulin secretion beyond the ability of glucose itself to stimulate insulin secretion.  相似文献   

13.
We investigated implications of nitric oxide (NO) derived from islet neuronal constitutive NO synthase (ncNOS) and inducible NOS (iNOS) on insulin secretory mechanisms in the mildly diabetic GK rat. Islets from GK rats and Wistar controls were analysed for ncNOS and iNOS by HPLC, immunoblotting and immunocytochemistry in relation to insulin secretion stimulated by glucose or l-arginine in vitro and in vivo. No obvious difference in ncNOS fluorescence in GK vs control islets was seen but freshly isolated GK islets displayed a marked iNOS expression and activity. After incubation at low glucose GK islets showed an abnormal increase in both iNOS and ncNOS activities. At high glucose the impaired glucose-stimulated insulin release was associated with an increased iNOS expression and activity and NOS inhibition dose-dependently amplified insulin secretion in both GK and control islets. This effect by NOS inhibition was also evident in depolarized islets at low glucose, where forskolin had a further amplifying effect in GK but not in control islets. NOS inhibition increased basal insulin release in perfused GK pancreata and amplified insulin release after glucose stimulation in both GK and control pancreata, almost abrogating the nadir separating first and second phase in controls. A defective insulin response to l-arginine was seen in GK rats in vitro and in vivo, being partially restored by NOS inhibition. The results suggest that increased islet NOS activities might contribute to the defective insulin response to glucose and l-arginine in the GK rat. Excessive iNOS expression and activity might be deleterious for the beta-cells over time.  相似文献   

14.
Hexosamines serve a nutrient-sensing function through enzymatic O-glycosylation of proteins. We previously characterized transgenic (Tg) mice with overexpression of the rate-limiting enzyme in hexosamine production, glutamine:fructose-6-phosphate amidotransferase, in beta-cells. Animals were hyperinsulinemic, resulting in peripheral insulin resistance. Glucose tolerance deteriorated with age, and males developed diabetes. We therefore examined islet function in these mice by perifusion in vitro. Young (2-mo-old) Tg animals had enhanced sensitivity to glucose of insulin secretion. Insulin secretion was maximal at 20 mM and half maximal at 9.9 +/- 0.5 mM glucose in Tg islets compared with maximal at 30 mM and half maximal at 13.5 +/- 0.7 mM glucose in wild type (WT; P < 0.005). Young Tg animals secreted more insulin in response to 20 mM glucose (Tg, 1,254 +/- 311; WT, 425 +/- 231 pg x islet(-1) x 35 min(-1); P < 0.01). Islets from older (8-mo-old) Tg mice became desensitized to glucose, with half-maximal secretion at 16.1 +/- 0.8 mM glucose, compared with 11.8 +/- 0.7 mM in WT (P < 0.05). Older Tg mice secreted less insulin in response to 20 mM glucose (Tg, 2,256 +/- 342; WT, 3,493 +/- 367 pg x islet(-1) x 35 min(-1); P < 0.05). Secretion in response to carbachol was similar in WT and Tg at both ages. Glucose oxidation was blunted in older Tg islets. At 5 mM glucose, islet CO2 production was comparable between Tg and WT. However, WT mice increased islet CO2 production 2.7 +/- 0.4-fold in 20 mM glucose, compared with only 1.4 +/- 0.1-fold in Tg (P < 0.02). Results demonstrate that hexosamines are involved in nutrient sensing for insulin secretion, acting at least in part by modulating glucose oxidation pathways. Prolonged excess hexosamine flux results in glucose desensitization and mimics glucose toxicity.  相似文献   

15.
The phosphatidylinositol-3-kinase-dependent kinase, Akt2, plays a central role in mediating insulin effects in glucose-metabolizing tissues. Akt2 knockout mice display insulin resistance with a reactive increase in pancreatic islet mass and hyperinsulinemia. The related phosphatidylinositol-3-kinase-dependent kinase, serum- and glucocorticoid-regulated kinase 3 (SGK3), is essential for normal postnatal hair follicle development but plays no apparent role in glucose homeostasis. We report here an unexpected role of SGK3 in islet β-cell function, which is revealed in Akt2/SGK3 double-knockout (DKO) mice. DKO mice have markedly worse glucose homeostasis than Akt2 single-null animals, including greater baseline glucose, and greater rise in blood glucose after glucose challenge. However, surprisingly, our data strongly support the idea that this exacerbation of the glucose-handling defect is due to impaired β-cell function, rather than increased insulin resistance in peripheral tissues. DKO mice had lower plasma insulin and C-peptide levels, lower β-cell mass, reduced glucose-stimulated insulin secretion, and greater sensitivity to exogenous insulin than Akt2 single nulls. We further demonstrated that SGK3 is strongly expressed in normal mouse islets and, interestingly, that β-catenin expression is dramatically lower in the islets of DKO mice than in those of Akt2(-/-)/SGK3(+/+) or Akt2(-/-)/SGK3(+/-) mice. Taken together, these data strongly suggest that SGK3 plays a previously unappreciated role in glucose homeostasis, likely through direct effects within β-cells, to stimulate proliferation and insulin release, at least in part by controlling the expression and activity of β-catenin.  相似文献   

16.
17.
To investigate the role of protein kinase C (PKC) in the regulation of insulin secretion, we visualized changes in the intracellular localization of alpha-PKC in fixed beta-cells from both isolated rat pancreatic islets and the pancreas of awake unstressed rats during glucose-induced insulin secretion. Isolated, perifused rat islets were fixed in 4% paraformaldehyde, detergent permeabilized, and labeled with a mAb specific for alpha-PKC. The labeling was visualized by confocal immunofluorescent microscopy. In isolated rat pancreatic islets perifused with 2.75 mM glucose, alpha-PKC immunostaining was primarily cytoplasmic in distribution throughout the beta-cells. In islets stimulated with 20 mM glucose, there was a significant redistribution of alpha-PKC to the cell periphery. This glucose-induced redistribution was abolished when either mannoheptulose, an inhibitor of glucose metabolism, or nitrendipine, an inhibitor of calcium influx, were added to the perifusate. We also examined changes in the intracellular distribution of alpha-PKC in the beta-cells of awake, unstressed rats that were given an intravenous infusion of glucose. Immunocytochemical analysis of pancreatic sections from these rats demonstrated a glucose-induced translocation of alpha-PKC to the cell periphery of the beta-cells. These results demonstrate that the metabolism of glucose can induce the redistribution of alpha-PKC to the cell periphery of beta-cells, both in isolated islets and in the intact animal, and suggest that alpha-PKC plays a role in mediating glucose-induced insulin secretion.  相似文献   

18.
Pancreatic beta-cell-restricted knockout of the insulin receptor results in hyperglycemia due to impaired insulin secretion, suggesting that this cell is an important target of insulin action. The present studies were undertaken in beta-cell insulin receptor knockout (betaIRKO) mice to define the mechanisms underlying the defect in insulin secretion. On the basis of responses to intraperitoneal glucose, approximately 7-mo-old betaIRKO mice were either diabetic (25%) or normally glucose tolerant (75%). Total insulin content was profoundly reduced in pancreata of mutant mice compared with controls. Both groups also exhibited reduced beta-cell mass and islet number. However, insulin mRNA and protein were similar in islets of diabetic and normoglycemic betaIRKO mice compared with controls. Insulin secretion in response to insulin secretagogues from the isolated perfused pancreas was markedly reduced in the diabetic betaIRKOs and to a lesser degree in the nondiabetic betaIRKO group. Pancreatic islets of nondiabetic betaIRKO animals also exhibited defects in glyceraldehyde- and KCl-stimulated insulin release that were milder than in the diabetic animals. Gene expression analysis of islets revealed a modest reduction of GLUT2 and glucokinase gene expression in both the nondiabetic and diabetic mutants. Taken together, these data indicate that loss of functional receptors for insulin in beta-cells leads primarily to profound defects in postnatal beta-cell growth. In addition, altered glucose sensing may also contribute to defective insulin secretion in mutant animals that develop diabetes.  相似文献   

19.
The aim of this study was to characterize the glucose responsiveness of individual beta-cells from fa/fa rats under ad libitum feeding conditions. Enlarged intact islets from fed fa/fa rats had a compressed insulin response curve to glucose compared with smaller islets. Size-sorted islets from obese rats yielded beta-cells whose glucose responsiveness was assessed by reverse hemolytic plaque assay to determine whether glucose refractoriness was caused by a decreased number of responsive cells or output per cell. In addition, the effects of palmitic acid on glucose-stimulated insulin secretion were assessed because of evidence that nonesterified fatty acids have acute beneficial effects. Two- to threefold more beta-cells from >250 microm diameter (large) islets than <125 microm diameter (small) or lean islets responded to low glucose. Increasing the glucose (8.3-16.5 mM) induced a >10-fold increase in recruitment of active cells from small islets, compared with only a 2.6-fold increase in large islets. This refractoriness was partially reversed by preincubation of the cells in low glucose for 2 h. In addition, secretion per cell of the large islet beta-cell population was significantly reduced compared with lean beta-cells, so that the overall response capacity of large but not small islet beta-cells was significantly reduced at high glucose. Therefore, continued near-normal function of the beta-cells from small islets of fa/fa rats seems crucial for glucose responsiveness. Incubation of beta-cells from large islets with palmitic acid normalized the secretory capacity to glucose mainly by increasing recruitment and secondarily by increasing secretion per cell. In conclusion, these studies demonstrate refractoriness to glucose of beta-cells from large islets of fa/fa rats under ad libitum feeding conditions. When acutely exposed to nonesterified fatty acids, islets from fa/fa rats have a potentiated insulin response despite chronic elevation of plasma lipids in vivo.  相似文献   

20.
Insulin stimulates its own secretion and synthesis by pancreatic beta-cells. Although the exact molecular mechanism involved is unknown, changes in beta-cell insulin signalling have been recognized as a potential link between insulin resistance and its impaired release, as observed in non-insulin-dependent diabetes. However, insulin resistance is also associated with elevated plasma levels of free fatty acids (FFA) that are well known modulators of insulin secretion by pancreatic islets. This information led us to investigate the effect of FFA on insulin receptor signalling in pancreatic islets. Exposure of pancreatic islets to palmitate caused up-regulation of several insulin-induced activities including tyrosine phosphorylation of insulin receptor and pp185. This is the first evidence that short exposure of these cells to 100 microM palmitate activates the early steps of insulin receptor signalling. 2-Bromopalmitate, a carnitine palmitoyl-CoA transferase-1 inhibitor, did not affect the effect of the fatty acid. Cerulenin, an acylation inhibitor, abolished the palmitate effect on protein levels and phosphorylation of insulin receptor. This result supports the proposition that protein acylation may be an important mechanism by which palmitate exerts its modulating effect on the intracellular insulin signalling pathway in rat pancreatic islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号