首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nickel utilization by microorganisms.   总被引:45,自引:4,他引:41       下载免费PDF全文
  相似文献   

2.
Assembly of the active site of the [NiFe]-hydrogenase enzymes involves a multi-step pathway and the coordinated activity of many accessory proteins. To analyze complex formation between these factors in Escherichia coli, they were genomically tagged and native multi-protein complexes were isolated. This method validated multiple interactions reported in separate studies from several organisms and defined a new complex containing the putative chaperone HybG and the large subunit of hydrogenase 1 or 2. The complex also includes HypE and HypD, which interact with each other before joining the larger complex.  相似文献   

3.
植物吸收利用铁的机理   总被引:5,自引:1,他引:5  
根据植物铁营养的一些研究进展,论述了植物对铁的吸收和运输机理以及HCO3^-,N、P等因素对铁利用效率的影响。  相似文献   

4.
Nickel transport systems in microorganisms   总被引:8,自引:0,他引:8  
The transition metal Ni is an essential cofactor for a number of enzymatic reactions in both prokaryotes and eukaryotes. Molecular analyses have revealed the existence of two major types of high-affinity Ni2+ transporters in bacteria. The Nik system of Escherichia coli is a member of the ABC transporter family and provides Ni2+ ion for the anaerobic biosynthesis of hydrogenases. The periplasmic binding protein of the transporter, NikA, is likely to play a dual role. It acts as the primary binder in the uptake process and is also involved in negative chemotaxis to escape Ni overload. Expression of the nik operon is controlled by the Ni-responsive repressor NikR, which shows functional similarity to the ferric ion uptake regulator Fur. The second type of Ni2+ transporter is represented by HoxN of Ralstonia eutropha, the prototype of a novel family of transition metal permeases. Members of this family have been identified in gram-negative and gram-positive bacteria and recently also in a fission yeast. They transport Ni2+ with very high affinity, but differ with regard to specificity. Site-directed mutagenesis experiments have identified residues that are essential for transport. Besides these uptake systems, different types of metal export systems, which prevent microorganisms from the toxic effects of Ni2+ at elevated intracellular concentrations, have also been described. Received: 14 July / Accepted: 8 October 1999  相似文献   

5.
Phosphate uptake and utilization by bacteria and algae   总被引:6,自引:2,他引:4  
Mats Jansson 《Hydrobiologia》1988,170(1):177-189
Bacterial uptake of inorganic phosphate (closely investigated in Escherichia coli) is maintained by two different uptake systems. One (Pst system) is Pi-repressible and used in situations of phosphorus deficiency. The other system (Pit system) is constitutive. The Pit system also takes part in the phosphate exchange process where orthophosphate is continuously exchanged between the cell and the surrounding medium.Algal uptake mechanisms are less known. The uptake capacity increases during starvation but no clearly defined transport systems have been described. Uptake capacity seems to be regulated by internal phosphorus pools, e.g., polyphosphates. In mixed algal and bacterial populations, bacteria generally seem to be more efficient in utilizing low phosphate concentrations. The second half of this paper discusses how bacteria and algae can share limiting amounts of phosphate provided that the bacteria have pronouncedly higher affinity for phosphate. Part of the solution to this problem may be that bacteria are energy-limited rather than phosphate-limited and dependent on algal organic exudates for their energy supply.The possible phosphate exchange mechanism so convincingly demonstrated in Escherichia coli is here suggested to play a key role for the flux of phosphorus between bacteria and algae. Such a mechanism can also be used to explain the rapid phosphate exchange between the particulate and the dissolved phase which always occurs in short-term 32P-uptake experiments in lake waters.  相似文献   

6.
微生物嗜铁素介导的铁摄取   总被引:5,自引:0,他引:5  
王伟  肖明 《生物学杂志》2005,22(4):11-13,15
嗜铁素是好氧菌和兼性厌氧菌的一种产物,它是微生物在低铁条件下产生的小分子的、特异性的Fe^3+螯合因子。大多数的好氧和兼性厌氧微生物至少合成一种嗜铁素,由嗜铁素介导的铁摄取可能是细菌最普遍的一种获取铁元素的方式。  相似文献   

7.
Transport of nickel ions was studied in Alcaligenes eutrophus. Two transport systems for nickel ions exist to satisfy the nickel demand for the lithotrophic hydrogen metabolism. A major nickel transport activity exhibited an apparent affinity constant (K m) of 17 M nickel chloride. This activity was competitively inhibited by Mg2+, Mn2+, Zn2+, and Co2+. A minor nickel transport activity was determined in the presence of high (0.8 mM) magnesium. This activity was not inhibited by Zn2+ or Mn2+; its K m was determined to be 0.34 M nickel chloride. These kinetics suggested a second transport system in A. eutrophus. The membrane potential of A. eutrophus was decreased upon the addition of ammonium ions leading to a decreased nickel transport. This inhibition could be reversed by fructose or by hydrogen indicating an energy dependent nickel transport. Protonophores inhibited the nickel transport. However, inhibitors of ATP synthase like dicyclohexylcabodimide or venturicidin had little or no effect on nickel transport. These data indicated that the transport was coupled to the proton motive force.  相似文献   

8.
The objective of this study was to assess the effects of nickel chloride on human and rainbow trout erythrocytes in vitro. The cells were incubated with 0, 0.5 and 1 mM nickel chloride for 1 h at pH 7.40 and 25°C, then K+ efflux, SO42− uptake and GSH and GSSG concentrations were measured. In both kind of cells, “high concentration” nickel treatment increased KCl efflux with respect to the control. The SO42− uptake was not significantly different at “low nickel concentration” but was lower in erythrocytes treated with 1 mM nickel chloride; the rate constant of SO42− uptake decreased by 35% in human erythrocytes and by 44% in fish erythrocytes. Nickel chloride also acts on cellular metabolism and in particular on erythrocyte glutathione peroxidase with consequent increase in oxidative stress; the data show a significant decrease in intracellular GSH in both human (25%) and fish erythrocytes (18%) after treatment with nickel chloride, with concomitantly high GSSG concentrations and lower GSH/GSSG ratios.  相似文献   

9.
Nickel uptake system was investigated with a wild-type cell of Rhodopseudomonas capsulata and two mutants lacking uptake hydrogenase (Hup-). Wild type cells grown photoheterotrophically incorporated 63Ni2+ by a high affinity system. The uptake system had a pH of 7.0 and a temperature optimum of 28°C. Both Mg2+ and Co2+ ions severely repressed the uptake of Ni2+. Nickel transport was also inhibited by metabolic inhibitors including cyanide, azide, 2,4-dinitrophenol and m-chlorophenyl carbonylcyanidehydrazone. These data imply that Ni2+ uptake system occurs by the energy-linked system for Mg2+ transport. The intracellular distribution of 63Ni2+ in Hup- cells showed the same pattern as that of wild-type cells, indicate that the Hup- strains have no deficiency in Ni2+ transport.Abbreviations CCCP m-chlorophenyl carbonylcyanidehydrazone - HEPES N-2-hydroxylethylpiperazine-N-2-ethane-sulfuric acid - HOQNO 2-n-nonly-4-hydroxyquinoline-N-oxide - TMA tetramethylammonium hydroxide  相似文献   

10.
11.
Summary The continued release of caesium radioisotopes into the environment has led to a resurgence of interest in microbe-Cs interactions. Caesium exists almost exclusively as the monovalent cation Cs+ in the natural environment. Although Cs+ is a weak Lewis acid that exhibits a low tendency to form complexes with ligands, its chemical similarity to the biologically essential alkali cation K+ facilitates high levels of metabolism-dependent intracellular accumulation. Microbial Cs+ (K+) uptake is generally mediated by monovalent cation transport systems located on the plasma membrane. These differe widely in specificity for alkali cations and consequently microorganisms display large differences in their ability to accumulate Cs+; Cs+ appears to have an equal or greater affinity than K+ for transport in certain microorganisms. Microbial Cs+ accumulation is markedly influenced by the presence of external cations, e.g. K+, Na+, NH4 + and H+, and is generally accompanied by an approximate stoichiometric exchange for intracellular K+. However, stimulation of growth of K+-starved microbial cultures by Cs+ is limited and its has been proposed that it is not the presence of Cs+ in cells that is growth inhibitory but rather the resulting loss of K+. Increased microbial tolerance to Cs+ may result from sequestration of Cs+ in vacuoles or changes in the activity and/or specificity of transport systems mediating Cs+ uptake. The precise intracellular target(s) for Cs+-induced toxicity has yet to be clearly defined, although certain internal structures, e.g. ribosomes, become unstable in the presence of Cs+ and Cs+ is known to substitute poorly for K+ in the activation of many K+-requiring enzymes.  相似文献   

12.
一氧化氮对小麦叶片镍毒害的缓解作用   总被引:1,自引:0,他引:1  
采用溶液培养法研究了重金属镍(Ni)对扬麦158(Triticum aestivumL)幼苗生长的影响及外源一氧化氮(NO)对Ni毒害的缓解作用。结果表明,100μmol/LNi处理显著抑制小麦幼苗生长,导致叶绿素含量下降,丙二醛(MDA)含量显著升高,且叶片过氧化物酶(POD)、超氧化物歧化酶(SOD)和谷胱甘肽转硫酶(GST)等抗氧化酶活性升高。400μmol/L硝谱钠(SNP,NO供体)预处理2d,能够明显减轻Ni毒害,使叶绿素和MDA含量基本恢复至对照水平。NO可能是通过提高APX和GR等抗氧化酶的活性及谷胱甘肽含量而增强植株抗氧化能力,显著减轻由Ni导致的叶片Ca和Fe含量下降而增强小麦幼苗抵御Ni毒害的能力。  相似文献   

13.
14.
15.
Multicopper oxidases (MCO) contain at least four copper atoms arrayed in three distinct ligand fields supported by two canonical structural features: (1) multiples of the cupredoxin fold and (2) four unique sequence elements that include the ten histidine and one cysteine ligands to the four copper atoms. Ferroxidases are a subfamily of MCO proteins that contain residues supporting a specific reactivity towards ferrous iron; these MCOs play a vital role in iron metabolism in bacteria, algae, fungi, and mammals. In contrast to the fungal ferroxidases, e.g., Fet3p from Saccharomyces cerevisiae, the mammalian ceruloplasmin (Cp) is twice as large (six vs. three cupredoxin domains) and contains three type 1, or “blue,” copper sites. Chlamydomonas reinhardtii expresses a putative ferroxidase, Fox1, which has sequence similarity to human Cp (hCp). Eschewing the standard sequence-based modeling paradigm, we have constructed a function-based model of the Fox1 protein which replicates hCp’s six copper-site ligand arrays with an overall root mean square deviation of 1.4 Å. Analysis of this model has led also to assignment of motifs in Fox1 that are unique to ferroxidases, the strongest evidence to date that the well-characterized fungal high-affinity iron uptake system is essential to iron homeostasis in green algae. The model of Fox1 also establishes a subfamily of MCO proteins with a noncanonical copper-ligand organization. These diverse structures suggest alternative mechanisms for intramolecular electron transfer and require a new trajectory for the evolution of the MCO superfamily.  相似文献   

16.
17.
Pseudomonas putida CSV86 utilizes glucose, naphthalene, methylnaphthalene, benzyl alcohol and benzoate as the sole source of carbon and energy. Compared with glucose, cells grew faster on aromatic compounds as well as on organic acids. The organism failed to grow on gluconate, 2-ketogluconate, fructose and mannitol. Whole-cell oxygen uptake, enzyme activity and metabolic studies suggest that in strain CSV86 glucose utilization is exclusively by the intracellular phosphorylative pathway, while in Stenotrophomonas maltophilia CSV89 and P. putida KT2442 glucose is metabolized by both direct oxidative and indirect phosphorylative pathways. Cells grown on glucose showed five- to sixfold higher activity of glucose-6-phosphate dehydrogenase compared with cells grown on aromatic compounds or organic acids as the carbon source. Study of [14C]glucose uptake by whole cells indicates that the glucose is taken up by active transport. Metabolic and transport studies clearly demonstrate that glucose metabolism is suppressed when strain CSV86 is grown on aromatic compounds or organic acids.  相似文献   

18.
19.
20.
Mechanism of uptake of liquid hydrocarbons by microorganisms   总被引:2,自引:0,他引:2  
Growth rates of Candida tropicalis were studied in two different fermentors. One was the ordinary shaker flask containing both the aqueous culture medium and liquid hydrocarbons. The other was a specially designed rotating disk-type fermentor containing only the aqueous culture medium, into which vapors of n-paraffins from C6 to C18 were supplied continuously without forming the liquid hydrocarbon phase. The specific growth rates of Candida tropicalis in the rotating disk fermentor, under such conditions that supply of hydrocarbon vapor was sufficient, showed good agreement with those in the shaker flask. This seems to indicate that hydrocarbon uptake by Candida tropicals by direct contact with liquid hydrocarbon is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号