首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Peptidyl-glycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) is an enzyme that catalyzes conversion of glycine-extended peptides to alpha-amidated bioactive peptides. Two peptides that are processed at their carboxyl-termini by this enzyme are neuropeptide Y and anglerfish peptide Y, both of which possess a C-terminal glycine that is used as a substrate for amidation. Results from previous reports have demonstrated that neuropeptide Y-like and anglerfish peptide Y-like immunoreactivities are present in the brain of anglerfish (Lophius americanus). Furthermore, neuropeptide Y-like peptides, namely anglerfish peptide Y and anglerfish peptide YG (the homologues of pancreatic polypeptide) are present in the islet organ of this species. Neuropeptide Y has also been localized in the anterior, intermediated and posterior lobes of the pituitary gland in a variety of species. In order to learn more about the distribution of the enzyme responsible for alpha amidation of these peptides in the brain and pituitary and to specifically investigate the relationship of this enzyme to peptide synthesizing endocrine cells of the anglerfish islet, we performed an immunohistochemical study using several antisera generated against different peptide sequences of the enzyme. PAM antisera labeled cells in the islet organ, pituitary and brain, and fibers in the brain and pituitary gland. The PAM staining pattern in the brain was remarkably similar to the distribution of neuropeptide Y immunoreactivity reported previously. Clusters of cells adjacent to vessels in the anterior pituitary displayed punctate PAM immunoreactivity while varicose fibers were observed in the pituitary stalk and neurohypophysis. Endocrine cells of the islet organ were differentially labeled with different PAM antisera. Comparison of the staining patterns of insulin, glucagon, and anglerfish peptide Y in the islet organ to PAM immunoreactivity suggests a distribution of forms of PAM enzyme in insulin and anglerfish peptide Y-containing cells, but no overlap with glucagon-producing cells. The results also indicate that PAM immunoreactivity is widely distributed in the brain, pituitary and islet organ of anglerfish in cells that contain peptides that require presence of a C-terminal glycine for amidation.  相似文献   

2.
Summary Results from a previous report demonstrate that more than one molecular form of neuropeptide Y-like peptide may be present in the islet organ of the anglerfish (Lophius americanus). Most of the neuropeptide Y-like immunoreactive material was anglerfish peptide YG, which is expressed in a subset of islet cells, whereas an additional neuropeptide Y-like peptide(s) was localized in islet nerves. To learn more about the neuropeptide Y-like peptides in islet nerves, we have employed immunohistochemical and biochemical methods to compare peptides found in anglerfish islets and brain. Using antisera that selectively react with either mammalian forms of neuropeptide Y or with anglerfish peptide YG, subsets of neurons were found in the brain that labelled with only one or the other of the antisera. In separate sections, other neurons that were labelled with either antiserum exhibited similar morphologies. Peptides from brains and islets were subjected to gel filtration and reverse-phase high performance liquid chromatography. Radioimmunoassays employing either the neuropeptide Y or peptide YG antisera were used to examine chromatographic eluates. Immunoreactive peptides having retention times of human neuropeptide Y and porcine neuropeptide Y were identified in extracts of both brain and islets. This indicates that peptides structurally similar to both of these peptides from the neuropeptide Y-pancreatic polypeptide family are expressed in neurons of anglerfish brain and nerve fibers of anglerfish islets. The predominant form of neuropeptide Y-like peptide in islets was anglerfish peptide YG. Neuropeptide Y-immunoreactive peptides from islet extracts that had chromatographic retention times identical to human neuropeptide Y and porcine neuropeptide Y were present in much smaller quantities. These results are consistent with the hypothesis that peptides having significant sequence homology with human neuropeptide Y and porcine neuropeptide Y are present in the nerve fibers that permeate the islet.  相似文献   

3.
We have previously described a preferential reduction in the secretory response to nutrient secretagogues in pancreatic mouse islets maintained in culture after in vitro exposure to streptozotocin (SZ). This reduction was associated with an impaired substrate metabolism at the mitochondrial level. To further clarify this issue, mouse pancreatic islets were exposed in vitro to 2.2 mM SZ for 30 min. At 4 h after SZ treatment ultrastructural changes were apparent in the endoplasmic reticulum and Golgi areas of the B-cells. However, 2 and 6 days following SZ exposure the B-cells appeared well preserved, except for a marked decrease in the number of insulin-containing secretory granules. A morphometric analysis of the B-cells 6 days after SZ exposure showed a normal B-cell size and a normal volume fraction of B-cell mitochondria. However, there was a decrease in total islet size and a 13% decrease in the volume fraction of B-cells in the islets. These mouse islets exhibited a decreased content of the mitochondrial DNA-encoded cytochrome b mRNA, as evaluated by dot-blot analysis. As a whole, the data obtained indicate that SZ treatment does not induce a decrease in the number of mitochondria or long-lasting ultrastructural damage to this organelle. However, there is a clear decrease in the cytochrome b mRNA, suggesting that SZ can induce damage to the mitochondrial DNA.  相似文献   

4.
Summary By a regular immunoperoxidase method, alpha-1-proteinase inhibitor (Api) was demonstrated in pancreatic islets in individuals with and without genetic deficiency of Api. Subsequently a double immunoperoxidase method, with two different chromogens (diaminobenzidine-brown and 4-chloro-1-naphthol-blue), was applied on the same tissue section in order to identify cells containing Api and cells secreting polypeptide hormones. Api-positive cells and hormone-secreting cells were found to be mutually exclusive indicating that Api is synthesized by previously unrecognized islet cell. The population of Api cells was significantly higher in persons with genetic deficiency than in other individuals, implying a possible compensatory hyperplasia of those cells triggered by a low level of circulating Api.  相似文献   

5.
B D Noe  P C Andrews 《Peptides》1986,7(2):331-336
Sequence analyses of cDNAs prepared from anglerfish islet mRNA have demonstrated the presence of mRNAs coding for two different preproglucagons, aPPG-I and aPPG-II. Each of these precursors was predicted to contain 29 residue and 34 residue glucagon-related peptides as potential cleavage products. Recently, several glucagon-related peptides found in extracts of anglerfish islets have been isolated and characterized. In order to determine whether any of these peptides could be identified as metabolic cleavage products in anglerfish islets, differentially radiolabeled Mr 2,500-8,000 peptides from islet extracts were subjected to reverse phase HPLC under varying conditions. The potential cleavage products aPPG-II[52-80] and aPPG-II[89-122] could be readily identified among the extract peptides. Both peptides became labeled appropriately (as predicted from their sequences) with 13 different amino acids and demonstrated glucagon-like immunoreactivity in a radioimmunoassay. Conversely, a third peptide (aPPG-II[89-119]) could be found among the labeled products in small amounts only. These results demonstrate that glucagon-II[52-80] and aGLP-II[89-112] are primary cleavage products of aPPG-II and suggest that aGLP-IIc[89-119] may be a peptide generated more slowly by post-translational modification of aGLP-II.  相似文献   

6.
Cyclosporine A (CsA), a potent immunosuppressive drug, has been found to induce glucose intolerance through its toxic effect on the endocrine pancreas. It is not exactly known whether CsA has a direct effect on the endocrine pancreas or induces its effect indirectly. The present study was therefore undertaken to examine the function and morphology of isolated pancreatic islets when they are directly exposed in vitro to CsA. Pancreatic islets were isolated from adult male Lewis rats using collagenase ductal perfusion technique. The islets were separated with the discontinuous Ficoll gradient technique and further purified by hand picking of the non-islet tissue. The islets were cultured in RPMI-1640, pH 7.4 and maintained at 37 degrees C in a humid atmosphere of 5% (v/v) carbon dioxide in air. Cyclosporine was added to the culture medium to give a final concentration of 1 microg/ml (therapeutic dose), 5 microg/ml (toxic dose), or vehicle (control). Islets were harvested at 1, 4 and 10 days of culture and processed for functional or histological study. The functional study of the islets cultured with 1 microg/ml CsA showed insulin and C-peptide contents similar to those of the control islets. The islets cultured with 5 microg/ml CsA showed a marked decrease in insulin and C-peptide contents. Glucose-dependent insulin release was variable. C-peptide release was lower than that of the control following both the therapeutic and toxic doses of CsA. Phase contrast microscopy showed that the islets cultured with 1 microg/ml CsA were mostly normal looking with a well-defined regular periphery; a few islets had ill-defined or irregular peripheries. The islets cultured with 5 microg/ml CsA had ill-defined irregular peripheries at 1 day, and were dense and forming clumps at 4 and 10 days following culture. There was a decrease in the islet number following the therapeutic dose; the decrease was more following the toxic dose of CsA. The islet diameters increased after the therapeutic dose, but slightly decreased following the toxic dose of CsA. Islets showed a weakly positive immunoperoxidase reaction for insulin that was weaker following the toxic dose of CsA. It is concluded that CsA has a direct effect on B-cells that was proved by the functional and morphological changes seen in the pancreatic islets cultured in vitro.  相似文献   

7.
1. Because L-asparagine augments insulin release evoked by L-leucine, the metabolism of these two amino acids was investigated in rat pancreatic islets. 2. L-Leucine inhibited the uptake and deamidation of L-asparagine, but failed to exert any obvious primary effect upon the further catabolism of aspartate derived from exogenous asparagine. 3. L-Asparagine augmented the oxidation of L-leucine, and effect possibly attributable to activaion of 2-ketoisocaproate dehydrogenase. 4. The association of L-asparagine and L-leucine exerted a sparing action on the utilization of endogenous amino acids, so that the integrated rate of nutrients oxidation was virtually identical in the sole presence of L-leucine and simultaneous presence of L-asparagine and L-leucine, respectively. 5. It is proposed that the enhancing action of L-asparagine upon insulin release evoked by L-leucine is attributable to an increased generation rate of cytosolic NADPH rather than any increase in nutrients oxidation.  相似文献   

8.
Summary In several animal species, galanin occurs in pancreatic nerves and inhibits insulin secretion. However, the presence and action of galanin in the human pancreas have not been established. Therefore, we examined the presence and nature of human pancreatic galanin-like immunoreactive material (GLIR) and the effects of galanin on glucose-stimulated insulin secretion from isolated human islets. Immunofluorescent staining of human pancreas revealed GLIR in fine varicose fibers in both islets and exocrine parenchyma. Furthermore, acid extracts of pancreas (n=3) and isolated islets (n=3) contained 0.17±0.06 and 0.23±0.11 pmol GLIR/mg protein. Human pancreatic GLIR coeluted with synthetic porcine galanin from Sephadex G-50. Moreover, synthetic porcine galanin inhibited glucose-stimulated insulin secretion from collagenase-isolated human islets at dose rates >10-8 M. Thus, (1) human pancreas is innervated by galanin-containing nerves, (2) human pancreatic GLIR is of similar size as synthetic porcine galanin, and (3) porcine galanin inhibits glucose-stimulated insulin secretion from human islets. Therefore, galanin could be an important local regulator of insulin secretion in man.  相似文献   

9.
Summary The pars distalis of the anterior pituitary is known to be regulated by hypothalamic hormones. Recently, we have discovered the presence of substance P-like immunoreactive nerve fibers in the pars distalis of the monkeys. Substance P-like immunoreactivity in the pars distalis of the dog was investigated in this study. A substantial amount of substance P-like immunoreactive nerve fibers with a large amount of varicosities were found. They were widely distributed in the gland, more abundant along its periphery. Most of them were closely related to the glandular tissue, some were located on vascular walls. Substance P-like immunoreactive nerve fibers were also found in the meningeal sheath of the anterior pituitary. They could be followed into the parenchyma of the gland.  相似文献   

10.
The effect of somatostatin on glucose-induced insulin secretion and cyclic AMP accumation in isolated islets from obese, hyperglycemic ob/ob mice was studied in a microperifusion system. The normal biphasic pattern of insulin release as well as the inhibitory pattern of insulin release produced by somatostatin (0.5–1 μg/ml) was matched by similar changes in the intracellular concentration of cyclic AMP. When islets were stimulated by glucose (3 mg/ml) plus 3-isobutyl-1-methylxanthine (0.1 mM), somatostatin (0.5 μg/ml) failed to inhibit insulin secretion or cyclic AMP formation in the second phase whereas in the first phase both parameters were significantly reduced by somatostatin (0.5 μg/ml). In batch-type incubations it was shown that addition of excess calcium (to 6 mM) reversed this inhibition. In the second phase calcium potentiated the (glucose + 3-isobutyl-1-methylxanthine)-stimulated insulin secretion without affecting the cyclic AMP production. This potentiation was inhibited by somatostatin (0.1 μg/ml). Somatostatin (1 μg/ml) inhibited adenylate cyclase activity in islet homogenates. No effect of somatostatin on islet glucose utilization could be demonstrated.The results indicate a dual action of somatostatin in the inhibition of insulin release, one involving the islet adenylate cyclase and one affecting the islet uptake of calcium.  相似文献   

11.
Neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP) immunoreactive nerves were demonstrated in 21-day-old embryonic pancreatic tissue fragments transplanted into the anterior eye chamber of rats for 22, 45 and 109 days and in 60-day-old normal adult pancreas using immunohistochemical technique. In normal adult tissue, NPY-positive neurons lie close to the basal and lateral walls of the acinar cells. NPY-containing nerve fiber plexuses were found around blood vessels. VIP-immunopositive nerves were also discernible in the outer parts of the islets of Langerhans and on pancreatic ducts. In the transplants, it is not only the neural elements that survived but also the pancreatic ducts and the endocrine cells. VIP- and NPY-positive neurons were found in the stroma of the surviving pancreatic tissue. The distribution of these neural elements is similar to that of normal tissue in the surviving pancreatic ducts but different with regards to the acinar tissue. This study confirms that intrinsic nerves can survive and synthesize polypeptides even after 109 days of transplantation into the anterior eye chamber.  相似文献   

12.
Differentiation of the pancreatic islets in grass snake Natrix natrix embryos, was analyzed using light, transmission electron microscopy, and immuno-gold labeling. The study focuses on the origin of islets, mode of islet formation, and cell arrangement within islets. Two waves of pancreatic islet formation in grass snake embryos were described. The first wave begins just after egg laying when precursors of endocrine cells located within large cell agglomerates in the dorsal pancreatic bud differentiate. The large cell agglomerates were divided by mesenchymal cells thus forming the first islets. This mode of islet formation is described as fission. During the second wave of pancreatic islet formation which is related to the formation of the duct mantle, we observed four phases of islet formation: (a) differentiation of individual endocrine cells from the progenitor layer of duct walls (budding) and their incomplete delamination; (b) formation of two types of small groups of endocrine cells (A/D and B) in the wall of pancreatic ducts; (c) joining groups of cells emerging from neighboring ducts (fusion) and rearrangement of cells within islets; (d) differentiated pancreatic islets with characteristic arrangement of endocrine cells. Mature pancreatic islets of the grass snake contained mainly A endocrine cells. Single B and D or PP–cells were present at the periphery of the islets. This arrangement of endocrine cells within pancreatic islets of the grass snake differs from that reported from most others vertebrate species. Endocrine cells in the pancreas of grass snake embryos were also present in the walls of intralobular and intercalated ducts. At hatching, some endocrine cells were in contact with the lumen of the pancreatic ducts.  相似文献   

13.
Summary A histological study of the pancreatic islets in rainbow trout, Salmo gairdneri, was undertaken in which polypeptide hormone-producing cells were localized, using immunocytochemical staining techniques. Four different celltypes were identified in this manner. These were the insulin, somatostatin, pancreatic polypeptide and glucagon/gastric inhibitory polypeptide (GIP) cells. The glucagon/GIP cell was designated thus as antisera to both hormones crossreacted with a common population of cells. A fifth cell-type, commonly referred to as a clear cell, was also identified although its secretory product is as yet undetermined. These functional cell types were compared to the standard tinctorial properties of pancreatic endocrine cells. The relationships of the various cell types with each other was also observed.  相似文献   

14.
Summary Correlative immunohistochemical and electron microscopical studies on the pancreatic islet of the teleost fish Xiphophorus helleri using antibodies to pancreatic polypeptide (PP) and glucagon show that separate cell types are responsible for the production of these peptides. The PP-cells correspond to the previously described A2-cells with round granules, while the A2-cells with crystalline granules are the true glucagon cells. An earlier suggestion that there are two types of glucagon cells in teleost islets is therefore withdrawn.A portion of the results has been presented at Colloque annuel de la Société Française de Microscopie électronique, Lyon-Villeurbanne, 21–23 Mai 1979. Study supported in part by the Medical Research Council  相似文献   

15.
Several neural, hormonal and biochemical inputs actively participate in the balance of insulin secretion induced by blood glucose fluctuations. The exact role of insulin as an autocrine and paracrine participant in the control of its own secretion remains to be determined, mostly due to insufficient knowledge about the molecular phenomena that govern insulin signaling in pancreatic islets. In the present experiments we demonstrate that higher insulin receptor and insulin receptor substrates-1 and -2 (IRS1 and IRS2) concentrations are predominantly encountered in cells of the periphery of rat pancreatic islets, as compared to centrally located cells, and that partial blockade of IRS1 protein expression by antisense oligonucleotide treatment leads to improved insulin secretion induced by glucose overload, which is accompanied by lower steady-state glucagon secretion and blunted glucose-induced glucagon fall. These data reinforce the inhibitory role of insulin upon its own secretion in isolated, undisrupted pancreatic islets.  相似文献   

16.
Summary Adrenal glands of human fetuses were investigated by means of an immunohistochemical method with the use of an anti-S-100 serum. S-100-immunoreactivity was recognized in sustentacular cells located among the chromaffin cells. A characteristic circular arrangement of the immunostained cells was found in the central region of the adrenal glands. It surrounded aggregations of non-argyrophilic, small, round cells, which were identified as the remaining sympathoblasts (primitive sympathetic cells).  相似文献   

17.
d-glucose (16.7 mM) stimulates the synthesis of polyphosphoinositides in in intact pacreatic islets prelabelled with tritiated myo-inositol and incubated in the absence of extracellular Ca2+. ATP (1.0 mM) exerts a comparable effect in sonicates of prelabelled normal or tumoral islet cells. In the acellular system, ATP fails to affect the generation of tritiated inositol phosphates in the absence of Ca2+, but augments the Ca2+-stimulated production of inositol mono-, bis- and triphosphates. The latter effect is not reproduced by α, ß-methylene ATP, suggesting that it is not attributable to a purinergic mechanism. Whether in the absence or presence of ATP, the Ca2+-induced increment in inositol phosphates production coincides with a comparable decrease in tritiated polyphosphoinositides. It is proposed, therefore, that the increased production of inositol phosphates in intact islets stimulated by nutrient secretagogues is attributable, in part at least, to an accelerated generation of polyphosphoinositides, possibly resulting from a rise in cytosolic ATP concentration.  相似文献   

18.
The opioidergic innervation of the mammalian spleen and possible species differences were investigated. Light-microscopic immunohistochemistry revealed that splenic nerves of bovine and porcine spleen, but not of rat, mouse, hamster and guinea-pig spleen contained proenkephalin-derived opioidergic innervation. Immunoreactivity to both prodynorphin and pro-opiomelanocortin was absent from splenic nerves. In bovine and porcine spleen, fibers immunoreactive for met-enkephalin, met-enkephalin-Arg-Phe, met-enkephalin-Arg-Gly-Leu, leu-enkephalin and peptide F formed perivascular plexus, traveled in trabecular connective tissue, and extended into the capsule. Spatial relationships with immune cells were apparent in the white and red pulp, excluding lymphoid follicles. Colocalization of enkephalin immunoreactivity with immunoreactivities for tyrosin hydroxylase, dopamin--hydroxylase, and neuropeptide Y, but not for substance P or calcitonin gene-related peptide were found. Our results provide evidence that opioid expression in splenic innervation is strongly species-dependent and exclusively proenkephalin-derived. Colocalization with marker enzymes of noradrenergic neurons indicates a mainly postganglionic sympathetic origin of proenkephalinergic splenic innervation. Opioidergic perivascular nerves probably control the splenic blood flow. A close interrelationship of opioidergic fibers with immune cells provides the anatomical basis for direct effects of neurally released opioids on splenic immune functions.  相似文献   

19.
20.
Summary Enteroendocrine cells containing glucagon-, substance P-, neurotensin- and VIP-like substances have been demonstrated immunocytochemically in the gut of Barbus conchonius. Mainly based on the distribution of the immunoreactive endocrine cells in this and a previous* study, at least eight different enteroendocrine cell types appear to be present in this stomachless fish: 1. C-terminal-gastrinimmunoreactive cells*, predominantly present in the upper parts of the folds of the proximal part of the intestinal bulb. 2. Metenkephalin-immunoreactive cells*, basally located in the folds of the first segment. 3. Pancreatic polypeptide (PP)-immunoreactive cells*, mainly present in the first half of the first segment. 4. Glucagon-like-immunoreactive (GLI) cells that are basally located in the folds of the first segment and that contain a different polypeptide (possibly glicentin) than pancreatic glucagon cells. 5. Substance P-immunoreactive cells, present in the upper parts of the folds throughout the gut. 6. C-terminal-neurotensin-immunoreactive cells, basally located in the folds throughout the first segment. 7. Vasoactive intestinal polypeptide (VIP)-immunoreactive cells, present in small numbers in the proximal part of the intestinal bulb. 8. Nonspecifically-immunoreactive cells*, found throughout the intestinal bulb. Many VIP-immunoreactive nerves have been demonstrated in the smooth muscle layer and myenteric plexus of the gut; furthermore some of them are peptide histidineisoleucine (PHI)-immunoreactive. Substance P-, somatostatin-, neurotensin- and met-enkephalin-immunoreactive nerves are also found. Thus, at least partial sequences of four different mammalian neuropeptide hormones (VIP, substance P, neurotensin, met-enkephalin) occur both in endocrine cells and enteric nerves of the gut of B. conchonius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号