首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study,we determined the contractile properties of single chemically skinnedfibers prepared from the medial gastrocnemius (MG) and soleus (Sol)muscles of adult male rhesus monkeys and assessed the effects of thespaceflight living facility known as the experiment support primatefacility (ESOP). Muscle biopsies were obtained 4 wk before andimmediately after an 18-day ESOP sit, and fiber type was determined byimmunohistochemical techniques. The MG slow type I fiber wassignificantly smaller than the MG type II, Sol type I, and Sol type IIfibers. The ESOP sit caused a significant reduction in the diameter oftype I and type I/II (hybrid) fibers of Sol and MG type II and hybridfibers but no shift in fiber type distribution. Single-fiber peak force(mN and kN/m2) was similarbetween fiber types and was not significantly different from valuespreviously reported for other species. The ESOP sit significantlyreduced the force (mN) of Sol type I and MG type II fibers. Thisdecline was entirely explained by the atrophy of these fiber typesbecause the force per cross-sectional area (kN/m2) was not altered. Peakpower of Sol and MG fast type II fiber was 5 and 8.5 times that of slowtype I fiber, respectively. The ESOP sit reduced peak power by 25 and18% in Sol type I and MG type II fibers, respectively, and, for theformer fiber type, shifted the force-pCa relationship to the right,increasing the Ca2+ activationthreshold and the free Ca2+concentration, eliciting half-maximal activation. The ESOP sit had noeffect on the maximal shortening velocity(Vo) of anyfiber type. Vo ofthe hybrid fibers was only slightly higher than that of slow type Ifibers. This result supports the hypothesis that in hybrid fibers theslow myosin heavy chain would be expected to have a disproportionatelygreater influence onVo.

  相似文献   

2.
Limb muscles from rats flown in space and after hindlimb unloading (HU) show an increased fatigability, and spaceflight has been shown to result in a reduced ability to oxidize fatty acids. The purpose of this investigation was to determine the effects of HU on the substrate content in fast- and slow-twitch fibers and to assess the substrate utilization patterns in single slow type I fibers isolated from control and HU animals. A second objective was to assess whether HU altered the ability of the heart or limb muscle to oxidize pyruvate or palmitate. After 2 wk of HU, single fibers were isolated from the freeze-dried soleus and gastrocnemius muscles. HU increased the glycogen content in all fiber types, and it increased lactate, ATP, and phosphocreatine in the slow type I fiber. After HU, the type I fiber substrate profile was shifted toward that observed in fast fibers. For example, fiber glycogen increased from 179 +/- 16 to 285 +/- 25 mmol/kg dry wt, which approached the 308 +/- 23 mmol/kg dry wt content observed in the post-HU type IIa fiber. With contractile activity, the type I fiber from the HU animal showed a greater utilization of glycogen and accumulation of lactate compared with the control type I fiber. HU had no effect on the ability of crude homogenate or mitochondria fractions from the soleus or gastrocnemius to oxidize pyruvate or palmitate. The increased fatigability after HU may have resulted from an elevated glycolysis producing an increased cell lactate and a decreased pH.  相似文献   

3.
The influence of cadmium intoxication on carbohydrate metabolism in skeletal muscles and liver of the male Wistar rats has been studied. Cadmium was administered as cadmium acetate in a dose of 0.3 mg Cd2+/kg body weight for three months. At the same time the control rats were injected with 0.9% NaCl. The animals were decapitated and samples of their skeletal muscles: the soleus muscle (composed mainly of red slow twitch fibers; ST) the gastrocnemius muscle containing two types of fibers (white fast twitch fibers FTb and red fast twitch fibers, FTa) and the liver were dissected out. In the samples of muscles, liver and serum contents of glycogen, glucose, pyruvate and lactate, as well as activities of hexokinase, pyruvate kinase and lactate dehydrogenase were measured. Intoxication of rats with cadmium for three months resulted in a reduction of glycolytic enzymes in the serum, ST and FTa muscle fibers and in the liver but did not change the activities of glycolytic enzymes in the FTb muscle fibers. The data obtained for the concentrations of glycogen in the liver and skeletal muscles suggest different mechanisms of cadmium influence on glycogen utilization in these organs.  相似文献   

4.
Summary Methods for standardized determination of phosphofructokinase (PFK), glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in nanogram samples of microdissected single fibres of rabbit psoas and soleus muscle are described. Fast and slow fibres in soleus muscle show lower absolute activities of these enzymes than the respective fibre types in psoas muscle. Slow fibres represent a more uniform population in the two muscles according to absolute and relative activities of the enzymes investigated. Slow fibres are characterized by high activities of MDH and relatively low activities of glycolytic enzymes. Fast fibres in the soleus muscle represent a population with high activities of MDH and glycolytic enzymes. Fast fibres in psoas muscle represent a heterogeneous population with high activities of glycolytic enzymes and extremely variable activity of MDH. More than 10-fold differences exist in the MDH activities of the extreme types of this fibre population. Differences in the activity levels of MDH in single fast type fibres but also in the activities of glycolytic enzymes between fast and slow fibres are greater than those reported between extreme white and red rabbit muscles.  相似文献   

5.
C Spamer  D Pette 《Histochemistry》1977,52(3):201-216
Methods for standardized determination of phosphofructokinase (PFK), glyceraldehydephosphate dehydrogenase (GAPDH), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) activities in nanogram samples of microdissected single fibres of rabbit psoas and soleus muscle are described. Fast and slow fibres in soleus muscle show lower absolute activities of these enzymes than the respective fibre types in psoas muscle. Slow fibres represent a more uniform population in the two muscles according to absolute and relative activities of the enzymes investigated. Slow fibres are characterized by high activities of MDH and relatively low activities of glycolytic enzymes. Fast fibres in the soleus muscle represent a population with high activities of MDH and glycolytic enzymes. Fast fibres in psoas muscle represent a heterogeneous population with high activities of glycolytic enzymes and extremely variable activity of MDH. More than 10-fold differences exist in the MDH activities of the extreme types of this fibre population. Differences in the activity levels of MDH in single fast type fibres but also in the activities of glycolytic enzymes between fast and slow fibres are greater than those reported between extreme white and red rabbit muscles.  相似文献   

6.
A combined histochemical, biochemical and electrophoretic study with respect to the enzymes succnic dehydrogenase(SDH), myofibrillar adenosine triphosphatase (m-ATPase), lactate dehydrogenase (LDH) isozymes and myosin light chains was carried out to investigate the response of rat gastrocnemius muscle (medial head). Twelve weeks after thyroidectomy, the results indicated a shift from fast to slow type pattern of LDH isozymes, fibre type transformation from Type II to Type I and a decrease in SDH and m-ATPase activity. The results suggest, possible thyroidal involvement in determining the phenotypic properties of skeletal muscle.  相似文献   

7.
Rats were fed on a diet containing 1% beta-guanidinopropionic acid (GPA), a creatine substrate analogue, for 6-10 weeks to deplete their muscle of creatine. This manipulation was previously shown to give a 90% decrease in [phosphocreatine] in skeletal and cardiac muscle and a 50% decrease in [ATP] in skeletal muscle only. Maximal activities of creatine kinase and of representative enzymes of aerobic and anaerobic energy metabolism were measured in the superficial white, medial and deep red portions of the gastrocnemius muscle, in the soleus and plantaris muscle and in the heart. Fast-twitch muscles were smaller in GPA-fed animals than in controls, but the size of the soleus muscle was unchanged. The activities of aerobic enzymes increased by 30-40% in all fast-twitch muscle regions except the superficial gastrocnemius, but were unchanged in the soleus muscle. The activities of creatine kinase and phosphofructokinase decreased by 20-50% in all skeletal-muscle regions except the deep gastrocnemius, and the activity of glycogen phosphorylase generally paralleled these changes. There were no significant changes in the activities of any of the enzymes measured in the heart. The glycogen content of the gastrocnemius-plantaris complex was increased by 185% in GPA-fed rats. The proportion of Type I fibres in the soleus muscle increased from 81% in control rats to 100% in GPA-fed rats, consistent with a previous report of altered isometric twitch characteristics and a decrease in the maximum velocity of shortening in this muscle [Petrofsky & Fitch (1980) Pflugers Arch. 384, 123-129]. We conclude that fast-twitch muscles adapt by a combination of decreasing diffusion distances, increasing aerobic capacity and decreasing glycolytic potential. Slow-twitch muscles decrease glycolytic potential and become slower, thus decreasing energy demand. These results suggest that persistent changes in the [phosphocreatine] and [ATP] are alone sufficient to alter the expression of enzyme proteins and proteins of the contractile apparatus, and that fibre-type-specific thresholds exist for the transformation response.  相似文献   

8.
The chronically active (pseudomyotonic) gastrocnemius muscle in the C57B16J dy2J/dy2J mouse contains both elevated lactate and glycogen as well as fibers that have high amounts of glycogen and enhanced glyconeogenic activity. In the present study we analyze the activities of some key glyconeogenic enzymes to assess the causes of elevated muscle glycogen and to determine the pathway for glycogen synthesis from lactate. Glycogen synthase, malate dehydrogenase, phosphoenolpyruvate carboxykinase, and malic enzyme were all elevated in homogenates of the chronically active muscle. Activities of glycogen phosphorylase and fructose 1,6-bisphosphatase were decreased in whole muscle homogenates. Histochemistry demonstrated that the high-glycogen fibers were typically fast-twitch glycolytic fibers that had high glycogen synthase, glycogen phosphorylase, and malic enzyme activities. Malate dehydrogenase activity followed succinate dehydrogenase activity and did not correlate to high-glycogen fibers. Thus the high-glycogen fibers have an elevated enzymatic capacity for glycogen synthesis from lactate, and the pathway may involve use of the pyruvate kinase bypass enzymes.  相似文献   

9.
10.
Male Wistar rats were strength and swim trained during a substantial period of old age to determine the influence of aging and activity on the histochemical and metabolic characteristics of a predominantly slow (soleus) and a predominantly fast (plantaris) skeletal muscle. Strength training counteracted the age-related atrophy of the fibers and the age-induced changes in fiber-type distribution of both muscles. Swim training, on the other hand, was without any effect on these parameters. The activity of both mitochondrial and cytoplasmic enzymes became lower with aging in the soleus muscle, whereas only the activity of the cytoplasmic enzymes became lower in the plantaris. Strength training reduced the aerobic capacity of both muscles, whereas swim training had the opposite effect. Aging induced a lower glycogen concentration of the lateral gastrocnemius muscle. This was avoided by swim training. The phosphocreatine and adenosine 5'-triphosphate concentrations were unchanged with aging but became higher with strength training. The activity pattern, therefore, seems to have a considerable influence on the age-related modification of the histochemical and metabolic characteristics of skeletal muscles of the rat. The effect, however, is related to the recruitment pattern of the fiber populations and the form of activity.  相似文献   

11.
5-Aminolevulinic acid (ALA), a heme precursor that accumulates in acute intermittent porphyria patients and lead-exposed individuals, has previously been shown to autoxidize with generation of reactive oxygen species and to cause in vitro oxidative damage to rat liver mitochondria. We now demonstrate that chronically ALA-treated rats (40 mg/kg body wt every 2 days for 15 days) exhibit decreased mitochondrial enzymatic activities (superoxide dismutase, citrate synthase) in liver and soleus (type I, red) and gastrocnemius (type IIb, white) muscle fibers. Previous adaptation of rats to endurance exercise, indicated by augmented (cytosolic) CuZn-superoxide dismutase (SOD) and (mitochondrial) Mn-SOD activities in several organs, does not protect the animals against liver and soleus mitochondrial damage promoted by intraperitoneal injections of ALA. This is suggested by loss of citrate synthase and Mn-SOD activities and elevation of serum lactate levels, concomitant to decreased glycogen content in soleus and the red portion of gastrocnemius (type IIa) fibers of both sedentary and swimming-trained ALA-treated rats. In parallel, the type IIb gastrocnemius fibers, which are known to obtain energy mainly by glycolysis, do not undergo these biochemical changes. Consistently, ALA-treated rats under swimming training reach fatigue significantly earlier than the control group. These results indicate that ALA may be an important prooxidant in vivo.  相似文献   

12.
Slow type I fibers in soleus and fast white (IIa/IIx, IIx), fast red (IIa), and slow red (I) fibers in gastrocnemius were examined electron microscopically and physiologically from pre- and postflight biopsies of four astronauts from the 17-day, Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission. At 2.5-microm sarcomere length, thick filament density is approximately 1,012 filaments/microm(2) in all fiber types and unchanged by spaceflight. In preflight aldehyde-fixed biopsies, gastrocnemius fibers possess higher percentages (approximately 23%) of short thin filaments than soleus (9%). In type I fibers, spaceflight increases short, thin filament content from 9 to 24% in soleus and from 26 to 31% in gastrocnemius. Thick and thin filament spacing is wider at short sarcomere lengths. The Z-band lattice is also expanded, except for soleus type I fibers with presumably stiffer Z bands. Thin filament packing density correlates directly with specific tension for gastrocnemius fibers but not soleus. Thin filament density is inversely related to shortening velocity in all fibers. Thin filament structural variation contributes to the functional diversity of normal and spaceflight-unloaded muscles.  相似文献   

13.
The activities of five enzymes have been studied quantitatively in denervated extensor digitorum longus, gastrocnemius and soleus muscles of 24-month-old rats. The results have been compared with those obtained from normal muscles of a similar age group of rats. Three weeks after denervation, the activity of hexokinase was increased in gastrocnemius and extensor digitorum longus. Phosphofructokinase, lactate dehydrogenase, malate dehydrogenase and 3-hydroxyacyl-CoA-dehydrogenase showed decreased activities. These results suggest that enzyme which represents glucose uptake increased its activity in fast muscles and that enzymes for anaerobic glycolysis, lactate fermentation, citric acid cycle and beta-oxidation had a decreased activity in slow and fast muscles.  相似文献   

14.
Some aminopeptidase activities, dipeptidase-, tripeptidase-, and carboxypeptidase activities were measured in two different types of skeletal muscle in rabbit soleus muscle as a slow oxidative, and gastrocnemius muscle as a fast glycolytic type after immobilization in full extension with a plaster cast for 1, 2, 4, 7, 14 or 28 days. In correlation to the higher protein turnover in red muscles, the activities except of leucine and alanine aminopeptidase were higher in the normal soleus muscle than in the gastrocnemius muscle. Much higher activities of the tested enzymes were obtained in the immobilized soleus muscle than in the normal one after 2 weeks of immobilization. In the gastrocnemius muscle the tested enzyme activities generally did not change or decrease. The results demonstrate that the peptidases play a role in the process of protein breakdown in normal and disused skeletal muscles.  相似文献   

15.
Abstract: Lactate dehydrogenase and aldolase activity were reduced in lateral gastrocnemius muscle from two mouse mutants, A2G- adr and 129Re- dy , with abnormal muscle function. The activities of both of these enzymes were significantly reduced in the lateral gastrocnemius muscle from the A2G- adr mice at ages varying from 2 weeks to 32 weeks, whereas the activities in the soleus, heart, liver, and brain were the same as in the control animals. The lactate dehydrogenase isoenzymes in the lateral gastrocnemius and soleus muscles from the A2G mice were quantified, and although those of the soleus were comparable in mutant and control muscle, the lateral gastrocnemius from the adr mutant had reduced activity of LDH 5 and increased activities of the other four isoenzymes. The findings suggest that the adr mutation is expressed in the white (Type II) muscle fibres and not in the red (Type I) fibres or in any of the organs studied. It is suggested that the initiation of differentiation into Type II fibres from the embryonic form is absent or delayed in the A2G mutant. The reduced activities of lactate dehydrogenase and aldolase in 129Re- dy muscle confirm the findings of other workers.  相似文献   

16.
Histochemical fiber typing and staining intensity in cat and rat muscles.   总被引:2,自引:0,他引:2  
In the gastrocnemius muscle of cat and rat, staining for oxidative enzymes differentiated three fiber types (A,B,C) and staining for adenosine triphosphate at pH 9.4 differentiated two fiber types (I, II) with a reliability of 90% and 98%, respectively. In cat 96% and in rat 90% of the fibers were typed identically after staining for nicotinamide adenine dinucleotidelinked lactic dehydrogenase (LDH) and succinic dehydrogenase (SDH). When differentiated by staining for LDH, A and B fibers were of type I. IN RAT, 80-90% OF ALL FIBERS WERE OF TYPE 22, COMPPRISING A, B and C fibers. Type I fibers stained for LDH intensely as did C fibers of type II, but stained intermediately for SDH. The degree of staining was measured by photometry. When fibers were stained for LDH, histograms of density showed three peaks corresponding to A, B and C fibers in cat, but only two peaks corresponding to A and C fibers in rat, In cat and rat, the densities of A, B and C fibers belonged to different populations. In soleus muscle of cat and rat stained for LDH, menadione-linked alpha-glycerophosphate dehydrogenase and adenosine triphosphatase at pH 9.4, the degree of staining differed from thatin any type of fiber in gastrocnemius muscle  相似文献   

17.
The purpose of this investigation was to study the effects of a 17-day spaceflight on the contractile properties of individual fast- and slow-twitch fibers isolated from biopsies of the fast-twitch gastrocnemius muscle of four male astronauts. Single chemically skinned fibers were studied during maximal Ca2+-activated contractions with fiber myosin heavy chain (MHC) isoform expression subsequently determined by SDS gel electrophoresis. Spaceflight had no significant effect on the mean diameter or specific force of single fibers expressing type I, IIa, or IIa/IIx MHC, although a small reduction in average absolute force (P(o)) was observed for the type I fibers (0.68 +/- 0.02 vs. 0.64 +/- 0.02 mN, P < 0.05). Subject-by-flight interactions indicated significant intersubject variation in response to the flight, as postflight fiber diameter and P(o) where significantly reduced for the type I and IIa fibers obtained from one astronaut and for the type IIa fibers from another astronaut. Average unloaded shortening velocity [V(o), in fiber lengths (FL)/s] was greater after the flight for both type I (0.60 +/- 0.03 vs. 0.76 +/- 0.02 FL/s) and IIa fibers (2.33 +/- 0.25 vs. 3.10 +/- 0.16 FL/s). Postflight peak power of the type I and IIa fibers was significantly reduced only for the astronaut experiencing the greatest fiber atrophy and loss of P(o). These results demonstrate that 1) slow and fast gastrocnemius fibers show little atrophy and loss of P(o) but increased V(o) after a typical 17-day spaceflight, 2) there is, however, considerable intersubject variation in these responses, possibly due to intersubject differences in in-flight physical activity, and 3) in these four astronauts, fiber atrophy and reductions in P(o) were less for slow and fast fibers obtained from the phasic fast-twitch gastrocnemius muscle compared with slow and fast fibers obtained from the slow antigravity soleus [J. J. Widrick, S. K. Knuth, K. M. Norenberg, J. G. Romatowski, J. L. W. Bain, D. A. Riley, M. Karhanek, S. W. Trappe, T. A. Trappe, D. L. Costill, and R. H. Fitts. J Physiol (Lond) 516: 915-930, 1999].  相似文献   

18.
Summary— In contrast to general belief, the response of rabbit muscles to denervation is maturation to slow-like type muscles [7]. We report now an investigation by biochemical, morphological, and mechanical studies of the time course effects of muscle denervation on the slow-type soleus and fast-type gastrocnemius to help clucidate the mechanism of maturation of rabbit denervated muscles to slow-like muscles. In both muscles, denervation induced selective progressive atrophy of most fast fibers and hypertrophy of many slow fibers which displayed wide Z-lines; this was accompanied by the appearance of hybrid LC1F- and LC1E-associated slow myosins. The percentage of slow myosins increased with age similarly in the contralateral and denervated soleus. On the other hand, the percentage of slow myosins remained low in the contralateral gastrocnemius, whereas it increased to 95% in the denervated gastrocnemius; in the denervated gastrocnemius, the percentage of slow myosins reached 50% at about 35 days postnatal. At this age, the maximal shortening velocity of the denervated gastrocnemius and its twitch contraction time were already those of a slow-type muscle. This suggests that in addition to myosin, other proteins contributed to the mechanical properties of the denervated gastrocnemius. Transformation of rabbit denervated muscles to slow-like type muscles, which are associated with a lower energy requirement and higher muscle endurance than fast-type muscles, may constitute an adequate model for human neuromuscular pathology.  相似文献   

19.
Summary The volume and surface area of mitochondria and sarcoplasmic reticulum in fast and slow twitch fibres of the cat triceps surae muscle were determined from thin sections. The width of the Z-line and the array of glycogen granules identified fast and slow twitch fibres.The relative volume occupied by mitochondria was largest in slow twitch gastrocnemius fibres. Fast twitch fibres showed the greatest scatter of mitochondrial content. This corresponds with the fact that motor units of the fast twitch type differ most with respect to resistance to fatigue.The relative volume of the sarcoplasmic reticulum was twice as large in fast as in slow twitch fibres. The volume fraction occupied by longitudinal tubules of the reticulum was the same in fast and slow twitch gastrocnemius fibres but was only half as large in the slow twitch soleus fibres. This difference may be related to post-tetanic potentiation: this property is present in all gastrocnemius fibres but is absent in soleus fibres.The specific tetanic force is 3 to 5 times smaller in slow twitch gastrocnemius than in slow twitch soleus fibres or fast gastrocnemius fibres. There was, however, no detectable morphological difference that might be related to this difference in force.Freeze fractures demonstrated directly that, in soleus fibres, terminal cisternae and longitudinal tubules of the reticulum were scarce as compared to gastrocnemius fibres. The plasma membranes of some gastrocnemius fibres displayed square arrays of 60-nm particles; these arrays were absent in other gastrocnemius fibres and in all soleus fibres. They probably characterize plasma membranes of fast twitch fibres.This study was supported by grants from the Danish Medical Research Council. I wish to thank Mrs. M. Bjærg for valuable technical help  相似文献   

20.
Contractile function of single muscle fibers after hindlimb suspension   总被引:1,自引:0,他引:1  
The purpose of this investigation was to determine how muscle atrophy produced by the hindlimb suspension (HS) model alters the contractile function of slow- and fast-twitch single muscle fibers. After 2 wk of HS, small bundles of fibers were isolated from the soleus and the deep and superficial regions of the lateral and medial heads of the gastrocnemius, respectively. The bundles were placed in skinning solution and stored at -20 degrees C until studied. Single fibers were isolated and suspended between a motor arm and force transducer, the functional properties were studied, and subsequently the fiber type was established by myosin heavy chain (MHC) analysis on 1-D sodium dodecyl sulfate polyacrylamide gel electrophoresis. After HS, slow-twitch fibers of the soleus showed a significant reduction in fiber diameter (68 +/- 2 vs. 41 +/- 1 micron) and peak tension (1.37 +/- 0.01 vs. 0.99 +/- 0.06 kg/cm2), whereas the maximal shortening speed (Vmax) increased [1.49 +/- 0.11 vs. 1.92 +/- 0.14 fiber lengths (FL)/s]. A histogram showed two populations of fibers: one with Vmax values identical to control slow-twitch fibers and a second with significantly elevated Vmax values. This latter group frequently contained both slow and fast MHC protein isoforms. The pCa-force relation of the soleus slow-twitch fibers was shifted to the right; consequently, the free Ca2+ required for the onset of tension and for 50% of peak tension was significantly higher after HS. Slow-twitch fibers isolated from the gastrocnemius after HS showed a significant reduction in diameter (67 +/- 4 vs. 44 +/- 3 microns) and peak tension (1.2 +/- 0.06 vs. 0.96 +/- 0.07 kg/cm2), but Vmax was unaltered (1.70 +/- 0.13 vs. 1.65 +/- 0.18 FL/s). Fast-twitch fibers from the red gastrocnemius showed a significant reduction in diameter (59 +/- 2 vs. 49 +/- 3 microns) but no change in peak tension or Vmax. Fast-twitch fibers from the white superficial region of the medial head of the gastrocnemius were unaffected by HS. Collectively, these data suggest that the effects of HS on fiber function depend on the fiber type and location. Both slow-twitch type I and fast-twitch type IIa fibers atrophied; however, only slow-twitch fibers showed a decline in peak tension, and the increase in Vmax was restricted to a subpopulation of slow-twitch soleus fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号