首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Progressive disease caused by pathogenic SIV/HIV infections is marked by systemic hyperimmune activation, immune dysregulation, and profound depletion of CD4(+) T cells in lymphoid and gastrointestinal mucosal tissues. IL-17 is important for protective immunity against extracellular bacterial infections at mucosa and for maintenance of mucosal barrier. Although IL-17-secreting CD4 (Th17) and CD8 (Tc17) T cells have been reported, very little is known about the latter subset for any infectious disease. In this study, we characterized the anatomical distribution, phenotype, and functional quality of Tc17 and Th17 cells in healthy (SIV-) and SIV+ rhesus macaques. In healthy macaques, Tc17 and Th17 cells were present in all lymphoid and gastrointestinal tissues studied with predominance in small intestine. About 50% of these cells coexpressed TNF-α and IL-2. Notably, ~50% of Tc17 cells also expressed the co-inhibitory molecule CTLA-4, and only a minority (<20%) expressed granzyme B suggesting that these cells possess more of a regulatory than cytotoxic phenotype. After SIV infection, unlike Th17 cells, Tc17 cells were not depleted during the acute phase of infection. However, the frequency of Tc17 cells in SIV-infected macaques with AIDS was lower compared with that in healthy macaques demonstrating the loss of these cells during end-stage disease. Antiretroviral therapy partially restored the frequency of Tc17 and Th17 cells in the colorectal mucosa. Depletion of Tc17 cells was not observed in colorectal mucosa of chronically infected SIV+ sooty mangabeys. In conclusion, our results suggest a role for Tc17 cells in regulating disease progression during pathogenic SIV infection.  相似文献   

3.
4.
To investigate the dynamics of spread of simian immunodeficiency virus (SIV) in the lymphoid organs, we sequentially analyzed the viral burden in lymph nodes (LN) of eight rhesus macaques inoculated intravenously with a high or low dose of the pathogenic SIVmac 251 isolate. For each animal, four axillary or inguinal LN were collected during the first weeks of infection and a fifth LN was taken 6 or 8 months later to estimate disease progression. Measurement of SIV RNA by in situ hybridization showed that all of the macaques studied had a phase of acute viral replication in LN between 7 and 14 days postinoculation which paralleled that observed in the blood. In a second phase, productive infection was controlled and viral particles were trapped in the germinal centers that developed in LN. While the peaks of productive infection were similar for the eight animals, marked differences in the numbers of productively infected cells that persisted in LN after primary infection were seen. Differences were less pronounced in the blood, where productive infection was efficiently controlled in all cases. The persistence of productively infected cells in LN after primary infection was found to be associated with more rapid disease progression, as measured by the decrease of the T4/T8 ratio and the occurrence of clinical signs. However, the persistence of a significant level of viral particles in germinal centers was observed even in animals that remained healthy over a 1- to 2-year observation period. This study indicates that the course of primary SIV infection in LN is variable, and it suggests that the initial capacity of the host to control productive infection in LN may determine the rate of disease progression.  相似文献   

5.
Cellular immune responses make an important contribution to both the control of human immunodeficiency virus (HIV) replication and disease progression. We used a pathogenic model of SIVmac251 infection of cynomolgus macaques to longitudinally evaluate cellular immune responses in association with various rates of disease progression. We found an inverse relationship between plasma viral load and the simian immunodeficiency virus (SIV)-specific T cells responses in peripheral blood and lymph nodes. SIV-specific T-cell responses in peripheral blood were transient during primary infection, with the highest responses detected around 3 months after infection. There was also a transient increase of central memory CD8+ T cells in peripheral blood during primary infection, and effector memory T-cell counts in peripheral lymph nodes were increased. This study emphasizes the importance of the early virus-specific immune responses in the outcome of HIV/SIV disease and provides details about the changes of virus-specific immune responses over time.  相似文献   

6.
The pathogenesis of AIDS virus infection in a nonhuman primate AIDS model was studied by comparing plasma viral loads, CD4(+) T-cell subpopulations in peripheral blood mononuclear cells, and simian immunodeficiency virus (SIV) infection in lymph nodes for rhesus macaques infected with a pathogenic molecularly cloned SIVmac239 strain and those infected with its nef deletion mutant (Deltanef). In agreement with many reports, whereas SIVmac239 infection induced AIDS and depletion of memory CD4(+) T cells in 2 to 3 years postinfection (p.i.), Deltanef infection did not induce any manifestation associated with AIDS up to 6.5 years p.i. To explore the difference in SIV infection in lymphoid tissues, we biopsied lymph nodes at 2, 8, 72, and 82 weeks p.i. and analyzed them by pathological techniques. Maximal numbers of SIV-infected cells (SIV Gag(+), Env(+), and RNA(+)) were detected at 2 weeks p.i. in both the SIVmac239-infected animals and the Deltanef-infected animals. In the SIVmac239-infected animals, most of the infected cells were localized in the T-cell-rich paracortex, whereas in the Deltanef-infected animals, most were localized in B-cell-rich follicles and in the border region between the paracortex and the follicles. Analyses by double staining of CD68(+) macrophages and SIV Gag(+) cells and by double staining of CD3(+) T cells and SIV Env(+) cells revealed that SIV-infected cells were identified as CD4(+) T cells in either the SIVmac239 or the Deltanef infection. Whereas the many functions of Nef protein were reported from in vitro studies, our finding of SIVmac239 replication in the T-cell-rich paracortex in the lymph nodes supports the reported roles of Nef protein in T-cell activation and enhancement of viral infectivity. Furthermore, the abundance of SIVmac239 infection and the paucity of Deltanef infection in the T-cell-rich paracortex accounted for the differences in viral replication and pathogenicity between SIVmac239 and the Deltanef mutant. Thus, our in vivo study indicated that the nef gene enhances SIV replication by robust productive infection in memory CD4(+) T cells in the T-cell-rich region in lymphoid tissues.  相似文献   

7.
It has long been appreciated that CD4+ T lymphocytes are dysfunctional in human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV)-infected individuals, and it has recently been shown that HIV/SIV infections are associated with a dramatic early destruction of memory CD4+ T lymphocytes. However, the relative contributions of CD4+ T-lymphocyte dysfunction and loss to immune dysregulation during primary HIV/SIV infection have not been fully elucidated. In the current study, we evaluated CD4+ T lymphocytes and their functional repertoire during primary SIVmac251 infection in rhesus monkeys. We show that the extent of loss of memory CD4+ T lymphocytes and staphylococcal enterotoxin B-stimulated cytokine production by total CD4+ T lymphocytes during primary SIVmac251 infection is tightly linked in a cohort of six rhesus monkeys to set point plasma viral RNA levels, with greater loss and dysfunction being associated with higher steady-state viral replication. Moreover, in exploring the mechanism underlying this phenomenon, we demonstrate that the loss of functional CD4+ T lymphocytes during primary SIVmac251 infection is associated with both a selective depletion of memory CD4+ T cells and a loss of the functional capacity of the memory CD4+ T lymphocytes that escape viral destruction.  相似文献   

8.
CD4(+) T-cell dysfunction highlighted by defects within the intracellular signaling cascade and cell cycle has long been characterized as a direct and/or indirect consequence of human immunodeficiency virus (HIV) infection in humans and simian immunodeficiency virus (SIV) infection in rhesus macaques (RM). Dysregulation of the M phase of the cell cycle is a well-documented effect of HIV or SIV infection both in vivo and in vitro. In this study the effect of SIV infection on the modulation of two important regulators of the M phase-polo-like kinases Plk3 and Plk1-was investigated. We have previously shown that Plk3 is markedly downregulated in CD4(+) T cells from SIV-infected disease-susceptible RM but not SIV-infected disease-resistant sooty mangabeys (SM), denoting an association of downregulation with disease progression. Here we show that, in addition to the downregulation, Plk3 exhibits aberrant activation patterns in the CD4(+) T cells from SIV-infected RM following T-cell receptor stimulation. Interestingly, in vitro SIV infection of CD4(+) T cells leads to the upregulation, rather than downregulation, of Plk3, suggesting that different mechanisms operate in vitro and in vivo. In addition, CD4(+) T cells from RM with high viral loads exhibited consistent and significant upregulation of Plk1, concurrent with an aberrant activation-induced Plk1 response, suggesting complex mechanisms of SIV-induced M-phase abnormalities in vivo. Altogether this study presents a novel mechanism underlying M-phase defects observed in CD4(+) T cells from HIV or SIV-infected disease-susceptible humans and RM which may contribute to aberrant T-cell responses and disease pathogenesis.  相似文献   

9.
A tritium-labeled DNA envelope gene probe was used to detect Simian Immunodeficiency Virus in formalin fixed lymph nodes from rhesus monkeys experimentally inoculated with SIVmac251. Cells containing SIV RNA produced strong hybridization signal and were present in small numbers in biopsy specimens and in much greater numbers in lymph nodes collected at autopsy. SIV-infected cells were morphologically identified as lymphocytes and macrophages.  相似文献   

10.
Clinical and in vitro studies have shown that activity of the autonomic nervous system (ANS) can stimulate lentivirus replication. To define the potential anatomical basis for this effect, we analyzed the spatial relationship between catecholaminergic neural fibers and sites of simian immunodeficiency virus (SIV) replication in lymph nodes from rhesus macaques experimentally infected with SIVmac251. Viral replication was mapped by in situ hybridization for SIV env, gag, and nef RNA, and catecholaminergic varicosities from the ANS were mapped by sucrose phosphate glyoxylic acid chemofluorescence. Spatial statistical analyses showed that the likelihood of active SIV replication increased by 3.9-fold in the vicinity of catecholaminergic varicosities (P < 0.0001). The densities of both ANS innervation and SIV replication differed across cortical, paracortical, and medullary regions of the lymph node, but analyses of each region separately continued to show increased replication of SIV adjacent to catecholaminergic varicosities. Ancillary analyses ruled out the possibility that SIV-induced alterations in lymph node architecture might create a spurious spatial association. These data support human clinical studies and in vitro molecular analyses showing that catecholamine neurotransmitters from the ANS can increase lentiviral replication by identifying a specific anatomic context for interactions between ANS neural fibers and replication of SIV in lymphoid tissue.  相似文献   

11.
Although the cellular immune response is essential for controlling SIV replication in Asian macaques, its role in maintaining nonpathogenic SIV infection in natural hosts such as sooty mangabeys (SM) remains to be defined. We have previously shown that similar to rhesus macaques (RM), SM are able to mount a T lymphocyte response against SIV infection. To investigate early control of SIV replication in natural hosts, we performed a detailed characterization of SIV-specific cellular immunity and viral control in the first 6 mo following SIV infection in SM. Detection of the initial SIV-specific IFN-γ ELISPOT response in SIVsmE041-infected SM coincided temporally with a decline in peak plasma viremia and was similar in magnitude, specificity, and breadth to SIVsmE041-infected and SIVmac239-infected RM. Despite these similarities, SM showed a greater reduction in postpeak plasma viremia and a more rapid disappearance of productively SIV-infected cells from the lymph node compared with SIVmac239-infected RM. The early Gag-specific CD8(+) T lymphocyte response was significantly more polyfunctional in SM compared with RM, and granzyme B-positive CD8(+) T lymphocytes were present at significantly higher frequencies in SM even prior to SIV infection. These findings suggest that the early SIV-specific T cell response may be an important determinant of lymphoid tissue viral clearance and absence of lymph node immunopathology in natural hosts of SIV infection.  相似文献   

12.
African green monkeys (AGMs) infected by simian immunodeficiency virus (SIV) SIVagm are resistant to AIDS. SIVagm-infected AGMs exhibit levels of viremia similar to those described during pathogenic human immunodeficiency virus type 1 (HIV-1) and SIVmac infections in humans and macaques, respectively, but contain lower viral loads in their lymph nodes. We addressed the potential role of dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN; CD209) in viral dissemination. In previous studies, it has been shown that human DC-SIGN and macaque DC-SIGN allow transmission of HIV and SIVmac to T cells. Here, we looked at the ability of DC-SIGN derived from AGM lymph nodes to interact with SIVagm. We show that DC-SIGN-expressing cells are present mainly in the medulla and often within the cortex and/or paracortex of AGM lymph nodes. We describe the isolation and characterization of at least three isoforms of dc-sign mRNA in lymph nodes of AGMs. The predicted amino acid sequence from the predominant mRNA isoform, DC-SIGNagm1, is 92 and 99% identical to the corresponding human and rhesus macaque DC-SIGN amino acid sequences, respectively. DC-SIGNagm1 is characterized by the lack of the fourth motif in the repeat domain. This deletion was also detected in the dc-sign gene derived from thirteen animals belonging to five other African monkey species and from four macaques (Macaca fascicularis and M. mulatta). Despite three- to seven-amino-acid modifications compared to DC-SIGNmac, DC-SIGNagm1 allows transmission of SIVagm to T cells. Furthermore, AGM monocyte-derived dendritic cells (MDDC) expressed at least 100,000 DC-SIGN molecules and were able to transmit SIVagm to T cells. At a low multiplicity of infection (10(-5) 50% tissue culture infective doses/cell), viral transmission by AGM MDDC was mainly DC-SIGN dependent. The present study reveals that DC-SIGN from a natural host species of SIV has the ability to act as an efficient attachment and transmission factor for SIVagm and suggests the absence of a direct link between this ability and viral load levels in lymph nodes.  相似文献   

13.
CD8+ T cell responses rapidly select viral variants during acute human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection. We used pyrosequencing to examine variation within three SIV-derived epitopes (Gag386-394GW9, Nef103-111RM9, and Rev59-68SP10) targeted by immunodominant CD8+ T cell responses in acutely infected Mauritian cynomolgus macaques. In animals recognizing all three epitopes, variation within Rev59-68SP10 was associated with delayed accumulation of variants in Gag386-394GW9 but had no effect on variation within Nef103-111RM9. This demonstrates that the entire T cell repertoire, rather than a single T cell population, influences the timing of immune escape, thereby providing the first example of conditional CD8+ T cell escape in HIV/SIV infection.  相似文献   

14.
Dysregulation of cytokines and chemokines during human immunodeficiency virus 1 (HIV-1) and simian immunodeficiency virus (SIV) infection is thought to be critical in the progression of acquired immunodeficiency syndrome (AIDS). To evaluate the potential role of Th1-agonist chemokines in disease progression during AIDS, we assessed CXCL9/MIG and CXCL10/IP-10 expression simultaneously in the periphery and lymphoid tissues of SIV-infected animals at a single-cell level by flow cytometry. We optimized intracellular staining and analysis of CXCL9/MIG and CXCL10/IP-10 production in human leukocyte antigen (HLA)-DR+ macaque cells by flow cytometry using cross-reactive antibodies against human chemokines. We observed an upregulation of CXCL9/MIG and CXCL10/IP-10 production in both the periphery and lymph nodes of infected animals compared with na?ve controls. Animals with higher viral loads had higher levels of CXCL9/MIG and CXCL10/IP-10 producing cells compared with animals with low viral loads. Analysis of cells bearing the receptor (CXCR3) for CXCL9/MIG and CXCL10/IP-10 revealed increased number of CXCR3+ cells in the lymph nodes of infected animals. Importantly, an inverse correlation (P < 0.05) between CXCL9/MIG and CXCL10/IP-10 production, both in the periphery and lymph nodes, and peripheral CD4+ T-cell numbers was observed. These findings provide further evidence that dysregulation of Th1 agonist chemokines might contribute to the ultimate immunopathology during AIDS.  相似文献   

15.
Natural killer T (NKT) cells express a highly conserved T-cell receptor (TCR) and recognize glycolipids in the context of CD1d molecules. We recently demonstrated that CD4+ NKT cells are highly susceptible to human immunodeficiency virus type 1 (HIV-1) infection and are selectively depleted in HIV-infected individuals. Here, we identified macaque NKT cells using CD1d tetramers and human Valpha24 antibodies. Similar to human NKT cells, alpha-galactosylceramide (alpha-GalCer)-pulsed dendritic cells activate and expand macaque NKT cells. Upon restimulation with alpha-GalCer-pulsed CD1d(+) cells, macaque NKT cells secreted high levels of cytokines, a characteristic of these T cells. Remarkably, the majority of resting and activated macaque NKT cells expressed CD8, and a smaller portion expressed CD4. Macaque NKT cells also expressed the HIV-1/simian immunodeficiency virus (SIV) coreceptor CCR5, and the CD4+ subset was susceptible to SIV infection. Identification of macaque NKT cells has major implications for delineating the role of these cells in nonhuman primate disease models of HIV as well as other pathological conditions, such as allograft rejection and autoimmunity.  相似文献   

16.
Early viral replication and profound CD4(+) T-cell depletion occur preferentially in intestinal tissues of macaques infected with simian immunodeficiency virus (SIV). Here we show that a much higher percentage of CD4(+) T cells in the intestine express CCR5 compared with those found in the peripheral blood, spleen, or lymph nodes. In addition, the selectivity and extent of the CD4(+) T-cell loss in SIV infection may depend upon these cells coexpressing CCR5 and having a "memory" phenotype (CD45RA(-)). Following intravenous infection with SIVmac251, memory CD4(+) CCR5(+) T cells were selectively eliminated within 14 days in all major lymphoid tissues (intestine, spleen, and lymph nodes). However, the effect on CD4(+) T-cell numbers was most profound in the intestine, where cells of this phenotype predominate. The CD4(+) T cells that remain after 14 days of infection lacked CCR5 and/or were naive (CD45RA(+)). Furthermore, when animals in the terminal stages of SIV infection (with AIDS) were examined, virtually no CCR5-expressing CD4(+) T cells were found in lymphoid tissues, and all of the remaining CD4(+) T cells were naive and coexpressed CXCR4. These findings suggest that chemokine receptor usage determines which cells are targeted for SIV infection and elimination in vivo.  相似文献   

17.
18.
Competitive PCR was used to evaluate the expression of cytokine, granzyme B, and chemokine genes in lymph nodes of macaques recently infected with the simian immunodeficiency virus (SIV) pathogenic molecular clone SIVmac239 (n = 16), the nonpathogenic vaccine strain SIVmac239 delta nef (n = 8), and the nonpathogenic molecular clone SIVmac1A11 (n = 8). For both SIVmac239 and its nef-deleted derivative, strong expression was observed as early as 7 days postinfection for interleukin 1beta (IL-1beta), IL-6, tumor necrosis factor alpha, gamma interferon, and IL-13. The levels of gene induction were equally intense for both viruses despite a lower viral load for SIVmac239 deltanef compared with that for SIVmac239. However, the nature of the cytokine network activation varied with the viral inocula. Primary infection with SIVmac239 was characterized by a higher level of IL-4, IL-10, MIP-1alpha, MIP-1beta, MCP-1, and RANTES gene expression and a lower level of IL-12 and granzyme B gene expression compared with infection with SIVmac239 delta nef. Thus, infection with nef-deleted SIV was associated with a preferential Th1 versus Th2 pattern of cytokine production. Infection with SIVmac1A11 was characterized by a delayed immune response for all markers tested. The unique patterns of cytokine and chemokine gene expression in lymph nodes correlated nicely with the pathogenic potential of the SIV strains used as well as with differences in their ability to serve as protective vaccines.  相似文献   

19.
The current knowledge about early innate immune responses at mucosal sites of human immunodeficiency virus (HIV) entry is limited but likely to be important in the design of effective HIV vaccines against heterosexual transmission. This study examined the temporal and anatomic relationship between virus replication, lymphocyte depletion, and cytokine gene expression levels in mucosal and lymphoid tissues in a vaginal-transmission model of HIV in rhesus macaques. The results of the study show that the kinetics of cytokine gene expression levels in the acute phase of infection are positively correlated with virus replication in a tissue. Thus, cytokine responses after vaginal simian immunodeficiency virus (SIV) inoculation are earliest and strongest in mucosal tissues of the genital tract and lowest in systemic lymphoid tissues. Importantly, the early cytokine response was dominated by the induction of proinflammatory cytokines, while the induction of cytokines with antiviral activity, alpha/beta interferon, occurred too late to prevent virus replication and dissemination. Thus, the early cytokine response favors immune activation, resulting in the recruitment of potential target cells for SIV. Further, unique cytokine gene expression patterns were observed in distinct anatomic locations with a rapid and persistent inflammatory response in the gut that is consistent with the gut being the major site of early CD4 T-cell depletion in SIV infection.  相似文献   

20.
The predictive value of acute gut-associated lymphoid tissue (GALT) CD4+ T cell depletion in lentiviral infections was assessed by comparing three animal models illustrative of the outcomes of SIV infection: pathogenic infection (SIVsmm infection of rhesus macaques (Rh)), persistent nonprogressive infection (SIVagm infection of African green monkeys (AGM)), and transient, controlled infection (SIVagm infection of Rh). Massive acute depletion of GALT CD4+ T cells was a common feature of acute SIV infection in all three models. The outcome of this mucosal CD4+ T cell depletion, however, differed substantially between the three models: in SIVsmm-infected Rh, the acute GALT CD4+ T cell depletion was persistent and continued with disease progression; in SIVagm, intestinal CD4+ T cells were partially restored during chronic infection in the context of normal levels of apoptosis and immune activation and absence of damage to the mucosal immunologic barrier; in SIVagm-infected Rh, complete control of viral replication resulted in restoration of the mucosal barrier and immune restoration. Therefore, our data support a revised paradigm wherein severe GALT CD4+ T cell depletion during acute pathogenic HIV and SIV infections of humans and Rh is necessary but neither sufficient nor predictive of disease progression, with levels of immune activation, proliferation and apoptosis being key factors involved in determining progression to AIDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号