首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies have been conducted in a gas circulation type fermentor in order to characterize the ethanol fermentation of uncooked cassava starch with Rhizopus koji. Results showed that ethanol concentration reached 13-14% (v/v) in 4-day broth, and the maximum productivity of ethanol was 2.3 g ethanol/L broth h. This productivity was about 50% compared to the productivity of a glucose-yeast system. Ethanol yield reached 83.5-72.3% of the theoretical yield for the cassava starch used. The fermentor used in the present work has been proven by experiment to be suitable for ethanol fermentation of the broth with solid substrate.  相似文献   

2.
Sorghum was used as raw material for alcoholic fermentation without cooking. Two varieties of sorghum grown in Thailand, KU 439 and KU 257, contained 80.0 and 75.8% of total sugar. Optimum amount of sorghum for alcoholic fermentation should be between 30 and 35% (w/v) in the fermentation broth. In these conditions 13.0 and 12.6% (v/v) of alcohol could be obtained in 84 and 91.9% yield based on the theoretical value of the starch content from KU 439 and KU 257, respectively.  相似文献   

3.
Breeding and growth of Rhizopus in raw cassava by solid state fermentation   总被引:1,自引:0,他引:1  
Nineteen Rhizopus strains were selected and tested for their growth capacity on raw cassava starch and their ability to produce amylase when grown on solid-state fermentations. Only three strains grew significantly on this natural substrate. Glucoamylase production was higher on raw cassava than on cooked cassava. After 48 h of fermentation, the protein content of cassava was increased from 1.75% to 11.3%. The byproducts of fermentation were fumaric acid, lactid acid and ethanol.  相似文献   

4.
Raw cassava root starch was transformed into ethanol in a one-step process of fermentation, in which are combined the conventional processes of liquefaction, saccharification, and fermentation to alcohol. Aspergillus awamori NRRL 3112 and Aspergillus niger were cultivated on wheat bran and used as Koji enzymes. Commercial A. niger amyloglucosidase was also used in this experiment. A raw cassava root homogenate–enzymes–yeast mixture fermented optimally at pH 3.5 and 30°C, for five days and produced ethanol. Alcohol yields from raw cassava roots were between 82.3 and 99.6%. Fungal Koji enzymes effectively decreased the viscosity of cassava root fermentation mashes during incubation. Commercial A. niger amyloglucosidase decreased the viscosity slightly. Reduction of viscosity of fermentation mashes was 40, 84, and 93% by commercial amyloglucosidase, A. awamori, and A. niger enzymes, respectively. The reduction of viscosity of fermentation mashes is probably due to the hydrolysis of pentosans by Koji enzymes.  相似文献   

5.
Alcohol fermentation of corn starch without cooking was performed by using Chalara paradoxa glucoamylase preparation, which had stronger raw starch digesting activity than those of the conventionally known glucoamylases. A raw corn starch-enzyme-yeast mixture was fermented optimally at pH 5.0 and 30 degrees C for five days and produced ethanol. The yields of ethanol were between 63.5 and 86.8% of the theoretical value by baker's yeast (Saccharomyces cerevisiae), and between 81.1 and 92.1% of the theoretical value by sake yeast (Saccharomyces sake).  相似文献   

6.
In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8?g:10?g:2?g yielded the highest enzyme production of 201.6?U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5?×?106 spores/mL inoculum, which gave the highest enzyme activity of 389.5?U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2?g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300?g raw cassava chips/L with cane molasses.  相似文献   

7.
Among about 200 Rhizopus strains isolated in Thailand, Rhizopus sp. MB46 was selected as a producer of raw cassava starch-digestive glucoamylase. Rice bran was effective for the enzyme production in a solid culture as well as wheat bran. Addition of turpentine oil into the rice bran solid culture increased the productivity. Rhizopus sp. MB46 was found to produce glucoamylase in a liquid culture containing 1% rice bran but not in one consisting of 10% raw cassava starch of 2% glucose. The productivity per 1 g solids in the medium in liquid culture was finally improved 6-times by utilization of n-hexane-treated rice bran, supplement of 0.1% meat extract and addition of gauze as a support. The activity was superior to that in turpentine oil-supplemented solid culture.  相似文献   

8.
The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30°C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87–0.97 g/g starch associated with 1.5–2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.  相似文献   

9.
10.
《Biomass》1988,15(3):201-207
Four strains of Zymomonas mobilis were compared for ethanol production from enzymatically hydrolysed cassava starch. Strain NRRL B-4286 performed efficiently, producing 80 g/litre ethanol from 171 g/litre initial sugar concentration. Addition of yeast extract, calcium pantothenate, ammonium sulphate or magnesium sulphate did not significantly increase ethanol production by this strain.  相似文献   

11.
In order to improve the productivity of raw cassava starch-digestive glucoamylase of Rhizopus sp. MB46 in a liquid culture, a mutant strain, AF-1, which is resistant to 2-deoxyglucose, was derived. The mutant strain produced glucoamylase in the presence of 0.5% glucose though the parent strain did not. With a rice bran liquid medium the productivity was over 2-times that of the wild type strain. A rice bran liquid medium supplemented with β-cyclodextrin was also effective for glucoamylase production. Other maceration enzymes were also produced at a higher level with mutant strain AF-1 than with the wild type strain in a liquid culture as well as in a solid culture. The elution patterns of these enzymes on CM-cellulose column chromatography were principally the same with both strains except for glucoamylase. When 10% of raw cassava starch and cassava waste were digested with the culture filtrate of mutant strain AF-1, glucose was produced in 7% after 60-h incubation and 3.2% after 48-h incubation, respectively.  相似文献   

12.
Protein enrichment of sago starch of three different diameters was investigated both in flask culture and under forced aeration in a packed-bed fermenter using two strains of Rhizopus. Protein production by R. oligosporus UQM 145F was superior to Rhizopus sp. UQM 186F in the flask culture without aeration, with both preferring larger diameter (3 to 4 mm) spherical sago-beads. In the packed-bed fermenter with forced aeration, Rhizopus sp. UQM 186F led to more rapid protein production compared to R. ollgosporus UQM 145F and produced equivalent final yields (about 10% protein on a dry wt basis).E. Gumbira-Sa'id, P.F. Greenfield and D.A. Mitchell are with the Department of Chemical Engineering, and H.W. Doelle is with the Department of Microbiology, University of Queensland, Queensland 4072, Australia.  相似文献   

13.
Lactic acid bacteria of the sour cassava starch fermentation   总被引:1,自引:0,他引:1  
In Brazil and Colombia, 'sour starch' is traditionally obtained by a submerged lactic fermentation of crude cassava starch followed by sun drying. It is used by local bakers to prepare breadlike products which display the same expanded crumb texture as in wheat bread.
In this process, suspended starch is settled down and left aside for a few weeks under anaerobic conditions where natural lactic populations develop.
Three collections of clones isolated from local fermentations have been identified using the API procedure and further characterized. Most of them belong to different species of Lactobacillus . Many display a ropy phenotype, typical for exopolysaccharide (EPS) excretion. A possible role of these EPS in the special properties of sour starch is discussed.  相似文献   

14.
15.
The thermotolerant Rhizopus microsporus DMKU 33 capable of producing l-lactic acid from liquefied cassava starch was isolated and characterized for its phylogenetic relationship and growth temperature and pH ranges. The concentrations of (NH4)2SO4, KH2PO4, MgSO4 and ZnSO4·7H2O in the fermentation medium was optimized for lactic acid production from liquefied cassava starch by Rhizopus microsporus DMKU 33 in shake-flasks at 40 °C. The fermentation was then studied in a stirred-tank bioreactor with aeration at 0.75 vvm and agitation at 200 rpm, achieving the highest lactic acid production of 84 g/L with a yield of 0.84 g/g at pH 5.5 in 3 days. Lactic acid production was further increased to 105–118 g/L with a yield of 0.93 g/g and productivity of 1.25 g/L/h in fed-batch fermentation. R. microsporus DMKU 33 is thus advantageous to use in simultaneous saccharification and fermentation for l-lactic acid production from low-cost starchy substrates.  相似文献   

16.
Summary Growth kinetics of Rhizopus arrhizus MUCL 28168 were determined for different treatments of cassava during solid state fermentation. The best case gave a specific growth rate () of 0.24 h-1, a yield calculated on a basis that oxygen consumption (Yx/o) was 2.9 g biomass. g-1 O2 consumed and the maintenance coefficient (m) was 0.004 g O2 consumed. g-1 biomass. h-1.  相似文献   

17.
The fermentation pattern of cassava starch utilization was investigated at 37°C using Rhizopus oligosporus UQM 145 F and eight different media. Depending on the medium used, the addition of zinc or zinc plus iron to a combination of calcium plus manganese switches the fermentation from glucose accumulation to biomass (single cell protein) production. Complete starch hydrolyzation was obtained in both cases, with a complete glucose utilization resulting in 24 g biomass containing 30% true protein per 100 g cassava starch (= 7.45 g SCP/100 g substrate) in 24 hours. In the case of glucose accumulation, biomass was kept low and 15.5 g/l glucose representing 57.3% of starch supplied were obtained in 36 hours. R. oligosporus UQM 145 F grows well between 30° and 45°C. At 45°C and pH 5.0, 7.0 g SCP/100 g substrate were obtained, which rose to 8.6 g if cassava starch is replaced by ground cassava tuber.  相似文献   

18.
Alcoholic fermentation from raw corn starch using Schizosaccharomyces pombe AHU 3179 and a raw starch saccharifying enzyme (RSSE) from Corticium rolfsii AHU 9627 was investigated. The optimum ethanol production was achieved at pH 3.5, 27°C and under the yeast cell concentration of 2.7 × 109 cells/ml. Addition of RSSE 5 units (as glucoamylase)/g raw corn starch was found sufficient. Under these optimum conditions, 18.5% (v/v, at 15°C) ethanol was obtained from 30% raw corn starch (30.8% as glucose) after incubation for 48 h.  相似文献   

19.
Direct saccharification of 2.64% cassava starch by Rhizopus oligosporus 145F was attempted under various cultural conditions. Maximum glucose yield of 18.0 g/L culture filtrate was obtained with an initial pH 3.8, 2% (v/v) inoculum of R. oligosporus spores, and an incubation temperature of 45 degrees C in shake flask cultures for 48 h. This concomitantly produced 2.7 g mycelia/100g cassava starch containing 20.2% true protein. The production of glucose and mycelia was accomplished with 92.8% starch saccharification having 67.9% starch to glucose conversion efficiency.  相似文献   

20.

Rhizopus oryzae PTCC 5263 capacity in synthesis of lactic acid (LA) from 10 g/l of soluble potato starch was determined using one-step fermentation process. Pellets were the favorable growing form of the free cells. The extent of the natural ability of the test fungus on biofilm formation on loofah sponge was examined by immobilizing R. oryzae (LIRO). The maximum LA concentration for the free cells and LIRO within 96 h was 3 and 4 g/l, respectively. In terms of specific starch utilization rate (\(q_{\text{s}}\)) and specific LA formation (\(q_{\text{p}}\)), LIRO performed more favorably compared to the free cells (\(q_{{{\text{s}}_{\text{F}} }} > q_{{{\text{s}}_{\text{LIRO}} }}\) and \(q_{{{\text{p}}_{\text{F}} }} < q_{{{\text{p}}_{\text{LIRO}} }}\)). Cell immobilization strategy was undertaken for the column reactor studies based on the statistically optimized levels of the inoculum size and temperature. Maximum production of the LA by the LIRO using an airlift reactor with net draft tube was 5 g/l obtainable within 48 h.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号