首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies have been conducted in a gas circulation type fermentor in order to characterize the ethanol fermentation of uncooked cassava starch with Rhizopus koji. Results showed that ethanol concentration reached 13-14% (v/v) in 4-day broth, and the maximum productivity of ethanol was 2.3 g ethanol/L broth h. This productivity was about 50% compared to the productivity of a glucose-yeast system. Ethanol yield reached 83.5-72.3% of the theoretical yield for the cassava starch used. The fermentor used in the present work has been proven by experiment to be suitable for ethanol fermentation of the broth with solid substrate.  相似文献   

2.
Sorghum was used as raw material for alcoholic fermentation without cooking. Two varieties of sorghum grown in Thailand, KU 439 and KU 257, contained 80.0 and 75.8% of total sugar. Optimum amount of sorghum for alcoholic fermentation should be between 30 and 35% (w/v) in the fermentation broth. In these conditions 13.0 and 12.6% (v/v) of alcohol could be obtained in 84 and 91.9% yield based on the theoretical value of the starch content from KU 439 and KU 257, respectively.  相似文献   

3.
Breeding and growth of Rhizopus in raw cassava by solid state fermentation   总被引:1,自引:0,他引:1  
Nineteen Rhizopus strains were selected and tested for their growth capacity on raw cassava starch and their ability to produce amylase when grown on solid-state fermentations. Only three strains grew significantly on this natural substrate. Glucoamylase production was higher on raw cassava than on cooked cassava. After 48 h of fermentation, the protein content of cassava was increased from 1.75% to 11.3%. The byproducts of fermentation were fumaric acid, lactid acid and ethanol.  相似文献   

4.
Raw cassava root starch was transformed into ethanol in a one-step process of fermentation, in which are combined the conventional processes of liquefaction, saccharification, and fermentation to alcohol. Aspergillus awamori NRRL 3112 and Aspergillus niger were cultivated on wheat bran and used as Koji enzymes. Commercial A. niger amyloglucosidase was also used in this experiment. A raw cassava root homogenate–enzymes–yeast mixture fermented optimally at pH 3.5 and 30°C, for five days and produced ethanol. Alcohol yields from raw cassava roots were between 82.3 and 99.6%. Fungal Koji enzymes effectively decreased the viscosity of cassava root fermentation mashes during incubation. Commercial A. niger amyloglucosidase decreased the viscosity slightly. Reduction of viscosity of fermentation mashes was 40, 84, and 93% by commercial amyloglucosidase, A. awamori, and A. niger enzymes, respectively. The reduction of viscosity of fermentation mashes is probably due to the hydrolysis of pentosans by Koji enzymes.  相似文献   

5.
Alcohol fermentation of corn starch without cooking was performed by using Chalara paradoxa glucoamylase preparation, which had stronger raw starch digesting activity than those of the conventionally known glucoamylases. A raw corn starch-enzyme-yeast mixture was fermented optimally at pH 5.0 and 30 degrees C for five days and produced ethanol. The yields of ethanol were between 63.5 and 86.8% of the theoretical value by baker's yeast (Saccharomyces cerevisiae), and between 81.1 and 92.1% of the theoretical value by sake yeast (Saccharomyces sake).  相似文献   

6.
In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8?g:10?g:2?g yielded the highest enzyme production of 201.6?U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5?×?106 spores/mL inoculum, which gave the highest enzyme activity of 389.5?U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2?g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300?g raw cassava chips/L with cane molasses.  相似文献   

7.
The biochemical kinetic of direct fermentation for lactic acid production by fungal species of Rhizopus arrhizus 3,6017 and Rhizopus oryzae 2,062 was studied with respect to growth pH, temperature and substrate. The direct fermentation was characterized by starch hydrolysis, accumulation of reducing sugar, and production of lactic acid and fungal biomass. Starch hydrolysis, reducing sugar accumulation, biomass formation and lactic acid production were affected with the variations in pH, temperature, and starch source and concentration. A growth condition with starch concentration approximately 20 g/l at pH 6.0 and 30°C was favourable for both starch saccharification and lactic acid fermentation, resulting in lactic acid yield of 0.87–0.97 g/g starch associated with 1.5–2.0 g/l fungal biomass produced in 36 h fermentation. R. arrhizus 3,6017 had a higher capacity to produce lactic acid, while R. oryzae 2,062 produced more fungal biomass under similar conditions.  相似文献   

8.
9.
Protein enrichment of sago starch of three different diameters was investigated both in flask culture and under forced aeration in a packed-bed fermenter using two strains of Rhizopus. Protein production by R. oligosporus UQM 145F was superior to Rhizopus sp. UQM 186F in the flask culture without aeration, with both preferring larger diameter (3 to 4 mm) spherical sago-beads. In the packed-bed fermenter with forced aeration, Rhizopus sp. UQM 186F led to more rapid protein production compared to R. ollgosporus UQM 145F and produced equivalent final yields (about 10% protein on a dry wt basis).E. Gumbira-Sa'id, P.F. Greenfield and D.A. Mitchell are with the Department of Chemical Engineering, and H.W. Doelle is with the Department of Microbiology, University of Queensland, Queensland 4072, Australia.  相似文献   

10.
Lactic acid bacteria of the sour cassava starch fermentation   总被引:1,自引:0,他引:1  
In Brazil and Colombia, 'sour starch' is traditionally obtained by a submerged lactic fermentation of crude cassava starch followed by sun drying. It is used by local bakers to prepare breadlike products which display the same expanded crumb texture as in wheat bread.
In this process, suspended starch is settled down and left aside for a few weeks under anaerobic conditions where natural lactic populations develop.
Three collections of clones isolated from local fermentations have been identified using the API procedure and further characterized. Most of them belong to different species of Lactobacillus . Many display a ropy phenotype, typical for exopolysaccharide (EPS) excretion. A possible role of these EPS in the special properties of sour starch is discussed.  相似文献   

11.
12.
The fermentation pattern of cassava starch utilization was investigated at 37°C using Rhizopus oligosporus UQM 145 F and eight different media. Depending on the medium used, the addition of zinc or zinc plus iron to a combination of calcium plus manganese switches the fermentation from glucose accumulation to biomass (single cell protein) production. Complete starch hydrolyzation was obtained in both cases, with a complete glucose utilization resulting in 24 g biomass containing 30% true protein per 100 g cassava starch (= 7.45 g SCP/100 g substrate) in 24 hours. In the case of glucose accumulation, biomass was kept low and 15.5 g/l glucose representing 57.3% of starch supplied were obtained in 36 hours. R. oligosporus UQM 145 F grows well between 30° and 45°C. At 45°C and pH 5.0, 7.0 g SCP/100 g substrate were obtained, which rose to 8.6 g if cassava starch is replaced by ground cassava tuber.  相似文献   

13.
Direct saccharification of 2.64% cassava starch by Rhizopus oligosporus 145F was attempted under various cultural conditions. Maximum glucose yield of 18.0 g/L culture filtrate was obtained with an initial pH 3.8, 2% (v/v) inoculum of R. oligosporus spores, and an incubation temperature of 45 degrees C in shake flask cultures for 48 h. This concomitantly produced 2.7 g mycelia/100g cassava starch containing 20.2% true protein. The production of glucose and mycelia was accomplished with 92.8% starch saccharification having 67.9% starch to glucose conversion efficiency.  相似文献   

14.
Summary Fermentation of starch based industrial media was tested with yeast fusion products previously described, from a Baker's yeastSaccharomyces cerevisiae and Saccharomyces diastaticus and from a highly flocculentSaccharomyces cerevisiae andSaccharomyces diastaticus. The (somatic) fusion products were capable to produce more ethanol than parental strains after 96 h of batch fermentation. The aim of this work was to reduce the amount of enzyme used in saccharification by using good fermenting amylolytic yeast strains.  相似文献   

15.
This study shows that Rhizopus oryzae is capable of directly utilizing cassava pulp alone to L: -lactic acid in solid state fermentation (SSF). pH control at 6.0 helped prevent end product inhibition. Increasing lactate titer was observed at the higher initial moistened water due to the higher degree of substrate swelling and hydrolysis. With shaking, limited ethanol production but no change in lactate titer was observed. Rigorous shaking gave better oxygen transfer but presumably caused cell damage leading to substrate utilization through the biosynthesis route. Supplementing cassava pulp with nitrogen enhanced growth but not lactate production. Under the optimal conditions, R. oryzae converted the sole cassava pulp into lactic acid at the titer of 206.20?mg per g initial dry pulp. With the help of commercial cellulase and glucoamylase, the dramatically increasing lactate titer of 463.18?mg per g initial dry pulp was achieved via SSF.  相似文献   

16.
A simpler approach to produce biodiesel from cassava starch was established, which successfully integrates the simultaneous saccharification and heterotrophic algal fermentation in an identical system. Batch experiments were investigated to verify the feasibility of raw starchy substrates fermentation for microalgal oil. The highest cell density (49.34 g L−1) and oil content (54.60%) were obtained in 5-L fed-batch cultivation via simultaneous saccharification and fermentation (SSF). It is demonstrated that the previous multistep hydrolysis and fermentation for feedstock oil could be replaced by SSF with higher energy efficiency and lower facility costs.  相似文献   

17.
Summary During the solid state fermentation (SSF) of cassava starch by Aspergillus niger estimations were made of total water, consumed water and the residual water remaining in small quantities after 23 h. A theoretical calculation based on the Ross equation showed that the water activity (a w) of the substrate decreased to 0.85 towards the end of the culture. Such low values were assumed to be inhibitory to growth. The a w of the substrate was increased when sugarcane bagasse was used as a high water retention capacity support. Higher growth rates and substrate conversion to biomass were obtained with this system, confirming that water availability is a critical factor in the SSF of starch substrates.Abbreviations A, B Experimental constants - a w Water activity - H2Oc Consumed water - H2OR Residual water - H2OT Total water - IDW Initial dry weight - IMC Initial moisture content - OUR Oxygen uptake rate - S Substrate dry weight - Sc Substrate conversion: consumed substrate/initial substrate - S H Amount of sugars hydrolysed - SSF Solid state fermentation - X Biomass dry weight - W * Amount of solids/g of water  相似文献   

18.
19.
Three forms of glucoamylase [EC 3.2.1.3] of a Rhizopus sp., Gluc1 (M.W. 74,000), Gluc2 (M.W. 58,600), and Gluc3 (M.W. 61,400), which have similar pH optima and specific activities towards soluble starch were studied as to their behavior towards raw starch. The pH optima for raw starch digestion were different, that is, 4.5 for Gluc1 and 5.0 for both Gluc2 and Gluc3. All the enzymes digested raw starch almost completely but at quite different rates; Gluc2 and Gluc3, which lack the N-terminal portions of Gluc1, were 22 and 25 times less effective, respectively, for raw starch digestion than Gluc1. Of the three enzymes, only Gluc1 tightly bound to raw starch. Binding of Gluc1 to raw starch occurred pH-dependently with a broad pH optimum of 4.5-5.5, but temperature and ionic strength affected it only slightly and little, respectively. The binding constant of Gluc1 for raw starch at pH 5.0 and 4 degrees C was estimated to be 1.2 X 10(5) M-1. Fragment H (M.W. 16,700), presumably released from the N-terminal part of Gluc1, not only bound to raw starch itself but also inhibited the binding of Gluc1 to raw starch. pap-Gluc (M.W. 57,000) and chymo-Gluc (M.W. 64,000), which are papain- and chymotrypsin-modified Gluc1, respectively, and lack the N-terminal portions of Gluc1, resembled Gluc2 and Gluc3 in raw starch binding as well as digestion. All these results indicate that Gluc1 has a raw starch-binding site, different from the active center, in the N-terminal region. Various substrates and analogs inhibited the binding of Gluc1 to raw starch, presumably due to steric hindrance.  相似文献   

20.
Immobilized yeast cells in agar gel beads were used in a packed bed reactor for the production of ethanol from cane molasses at 30°C, pH 4.5. The maximum productivity, 79.5g ethanol/l.h was obtained with 195g/l reducing sugar as feed. Substrate (64.2%) was utilized at a dilution of 1.33h-1. The immobilized cell reactor was operated continuously at a constant dilution rate of 0.67h-1 for 100 days. The maximum specific ethanol productivity and specific sugar uptake rate were 0.610g ethanol/g cell.h and 1.275g sugar/g cell.h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号