共查询到20条相似文献,搜索用时 0 毫秒
1.
Ikeda Toshitaro; Iwamoto Takahiro; Wakabayashi Shigeo; Shigekawa Munekazu 《American journal of physiology. Cell physiology》1998,274(6):C1537
To assess the role of Ca2+in regulation of theNa+/H+exchanger (NHE1), we used CCL-39 fibroblasts overexpressing theNa+/Ca2+exchanger (NCX1). Expression of NCX1 markedly inhibited the transient cytoplasmic Ca2+ rise andlong-lasting cytoplasmic alkalinization (60-80% inhibition) induced by -thrombin. In contrast, coexpression of NCX1 did not inhibit this alkalinization in cells expressing the NHE1 mutant withthe calmodulin (CaM)-binding domain deleted (amino acids 637-656),suggesting that the effect of NCX1 transfection involves Ca2+-CaM binding. Expression ofNCX1 only slightly inhibited platelet-derived growth factor BB-inducedalkalinization and did not affect hyperosmolarity- or phorbol12-myristate 13-acetate-induced alkalinization. Downregulation ofprotein kinase C (PKC) inhibited thrombin-induced alkalinization partially in control cells and abolished it completely inNCX1-transfected cells, suggesting that the thrombin effect is mediatedexclusively via Ca2+ and PKC. Onthe other hand, deletion mutant study revealed that PKC-dependentregulation occurs through a small cytoplasmic segment (amino aids566-595). These data suggest that a mechanism involving directCa2+-CaM binding lasts for arelatively long period after agonist stimulation, despite apparentshort-lived Ca2+ mobilization, andfurther support our previous conclusion that Ca2+- and PKC-dependent mechanismsare mediated through distinct segments of the NHE1 cytoplasmic domain. 相似文献
2.
3.
4.
5.
Li X Alvarez B Casey JR Reithmeier RA Fliegel L 《The Journal of biological chemistry》2002,277(39):36085-36091
We examined the ability of carbonic anhydrase II to bind to and affect the transport efficiency of the NHE1 isoform of the mammalian Na(+)/H(+) exchanger. The C-terminal region of NHE1 was expressed in Escherichia coli fused with an N-terminal glutathionine S-transferase or with a C-terminal polyhistidine tag. Using a microtiter plate binding assay we showed that the C-terminal region of NHE1 binds carbonic anhydrase II (CAII) and binding was stimulated by low pH and blocked by antibodies against the C-terminal of NHE1. The binding to NHE1 was confirmed by demonstrating protein-protein interaction using affinity blotting with CAII and immobilized NHE1 fusion proteins. CAII co-immunoprecipitated with NHE1 from CHO cells suggesting the proteins form a complex in vivo. In cells expressing CAII and NHE1, the H(+) transport rate was almost 2-fold greater than in cells expressing NHE1 alone. The CAII inhibitor acetazolamide significantly decreased the H(+) transport rate of NHE1 and transfection with a dominant negative CAII inhibited NHE1 activity. Phosphorylation of the C-terminal of NHE1 greatly increased the binding of CAII. Our study suggests that NHE1 transport efficiency is influenced by CAII, likely through a direct interaction at the C-terminal region. Regulation of NHE1 activity by phosphorylation could involve modulation of CAII binding. 相似文献
6.
Christoph Romanin 《Channels (Austin, Tex.)》2013,7(5):329-336
Sodium proton exchangers (NHEs) constitute a large family of polytopic membrane protein transporters found in organisms across all domains of life. They are responsible for the exchange of protons for sodium ions. In archaea, bacteria, yeast and plants they provide increased salt tolerance by removing sodium in exchanger for extracellular protons. In humans they have a host of physiological functions, the most prominent of which is removal of intracellular protons in exchange for extracellular sodium. Human NHE is also involved in heart disease, cell growth and in cell differentiation. NHE’s physiological roles and the intriguing pathological consequences of their actions, make them a very important target of structural and functional studies. There are nine isoforms identified to date in humans. This review provides a brief overview of the human NHE’s physiological and pathological roles and cellular/tissue distribution, with special attention to the exemplar member NHE1. A summary of our knowledge to date of the structure and function of NHE1 is included focusing on a discussion of the recent discrepancies reported on the topology of NHE1. Finally we discuss a newly discovered relative of the NHE1 isoform, the Na+/Li+ exchanger, focusing on its predicted topology and its potential roles in disease. 相似文献
7.
The beta-adrenergic antagonists, alprenolol and propranolol, inhibit the Na+/H+ exchanger in rat renal brush-border membrane vesicles. Half-maximal inhibition occurs at 86 microM alprenolol and 36 microM propranolol. Similar to amiloride and Na+, propranolol protects the Na+/H+ exchanger from irreversible inhibition by the carboxyl group reagent, N,N'-dicyclohexyl-carbodiimide (DCCD). Protection is incomplete, depends on propranolol concentration, and reaches a maximum at 0.4 mM propranolol. With a comparable dose dependence, propranolol protects a 65 kDa band from labeling with [14C]DCCD. The data indicate that beta-adrenergic antagonists specifically interact with the proximal tubular Na+/H+ exchanger. 相似文献
8.
Han W Kim KH Jo MJ Lee JH Yang J Doctor RB Moe OW Lee J Kim E Lee MG 《The Journal of biological chemistry》2006,281(3):1461-1469
Na+/H+ exchanger 3 (NHE3) plays a pivotal role in transepithelial Na+ and HCO3(-) absorption across a wide range of epithelia in the digestive and renal-genitourinary systems. Accumulating evidence suggests that PDZ-based adaptor proteins play an important role in regulating the trafficking and activity of NHE3. A search for NHE3-binding modular proteins using yeast two-hybrid assays led us to the PDZ-based adaptor Shank2. The interaction between Shank2 and NHE3 was further confirmed by immunoprecipitation and surface plasmon resonance studies. When expressed in PS120/NHE3 cells, Shank2 increased the membrane expression and basal activity of NHE3 and attenuated the cAMP-dependent inhibition of NHE3 activity. Furthermore, knock-down of native Shank2 expression in Caco-2 epithelial cells by RNA interference decreased NHE3 protein expression as well as activity but amplified the inhibitory effect of cAMP on NHE3. These results indicate that Shank2 is a novel NHE3 interacting protein that is involved in the fine regulation of transepithelial salt and water transport through affecting NHE3 expression and activity. 相似文献
9.
Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H
i
) and external Na+ (Na
o
) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na
i
) and pH (pH
i
) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH
i
(from 5.7 to 7.4), external pH (pH
o
), Na
i
and Na
o
and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na
i
<2.0 mmol/liter cell, Na
o
= 150mm) increased sigmoidally (Hill coefficient 2.5) when pH
i
fell below 7.0 and the external pH
o
was 8.0, but increased linearly at pH
o
6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH
o
levels (pH
o
8 and pH
o
6). The H+-driven Na+ influx reached saturation between pH
i
5.9 and 6.1. TheV
max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK
m
for H
i
to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na
o
was studied at pH
i
6.0, and Na
i
lower than 2 mmol/liter cell at pH
o
6.0 and 8.0. The meanK
m
for Na
o
of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na
i
from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV
max between individuals. 相似文献
10.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX. 相似文献
11.
12.
Gende OA 《Archives of physiology and biochemistry》1998,106(3):221-227
This study aimed at establishing the role of calmodulin in regulating pHi of human platelets under acid loads and in stimulated states. The response of human platelets to thrombin was an initial drop of pHi followed by a recovery with a significant increase above the pre-stimulation level in control experiments and a recovery to initial values in platelets maintained in the presence of 19 mmol/l TFP (trifluoperazine = 2 trifluoromethyl-10 [3'-(1 methyl-4-piperazinyl) propyl] phenothiazine). The change in pHi after 8 min was 0.130 +/- 0.030 in the control and 0.001 +/- 0.011 pH units in TFP (P < 0.05). The initial velocity of recovery from an acid load was reduced to 56.7 +/- 6% of the control (n = 6, P < 0.05) with 50 mumol/l W7 (N-(6 aminohexyl)-5-chloro-l-naphthalene sulphonamide), and to 29.7 +/- 4.3% of the control (n = 8, P < 0.05) with 19 mumol/l TFP. The initial velocity of recovery was significantly greater in recalcified platelets than in the preparations kept in the nominal absence of extracellular calcium (1.08 +/- 0.12 vs 0.66 +/- 0.12 pH units per min, P < 0.05). Lower concentration of TFP had an inhibitory effect only in the presence of calcium. The velocities of recovery reached similar values at higher TFP concentration. The significant interaction between Ca2+ and TFP concentrations indicates that the Ca-calmodulin complex, rather than an unspecified direct action of TFP, is responsible for the modulation of the Na+/H+ exchanger. These findings indicate that calcium-calmodulin participates in both the recovery of pH after an acid load and the increase of pHi in stimulated states of human platelets. 相似文献
13.
Adjustment of amino-acid-induced cytoplasmic pH decrease by the Na+/H+ exchange system in human lymphocytes has been studied using a fluorometric technique to monitor the intracellular pH change. When the interior of lymphocytes is acidified by addition of nigericin to medium, cytoplasmic pH is immediately corrected toward its resting value. This recovery of the cytoplasmic pH depends on extracellular Na+ and is inhibited by amiloride. A temporary (less than 2 min) decrease in the cytoplasmic pH, followed by a slow recovery phase, was observed in incubation with 1.0 mM leucine in Na+-containing medium. This leucine-dependent decrease of cytoplasmic pH persisted longer when amiloride was added to the medium. Cytoplasmic pH recovery from the leucine-induced acidification depends on external Na+ concentration. Amiloride-sensitive Na+/H+ exchanger was stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in the lymphocytes and preincubation of the cells with TPA partially prevented the leucine-induced cytoplasmic acidification. We conclude that human peripheral lymphocytes are provided with an amino acid-H+ cotransport system, which is cooperatively coupled to the amiloride-sensitive Na+/H+ exchanger to correct the cytoplasmic pH anomaly. 相似文献
14.
Mechanisms of regulation of the Na+/H+ exchanger 总被引:30,自引:0,他引:30
15.
Regulation and characterization of the Na+/H+ exchanger. 总被引:1,自引:0,他引:1
L Fliegel R Murtazina P Dibrov C Harris A Moor F A Fernandez-Rachubinski 《Biochimie et biologie cellulaire》1998,76(5):735-741
The Na+/H+ exchanger is a ubiquitous protein present in all mammalian cell types that functions to remove one intracellular H+ for one extracellular Na+. Several isoforms of the protein exist, which are referred to as NHE1 to NHE6 (for Na+/H+ exchanger one through six). The NHE1 protein was the first isoform cloned and studied in a variety of systems. This review summarizes recent papers on this protein, particularly those that have examined regulation of the protein and its expression and activity. 相似文献
16.
Physiological role and regulation of the Na+/H+ exchanger 总被引:1,自引:0,他引:1
In mammalian eukaryotic cells, the Na+/H+ exchanger is a family of membrane proteins that regulates ions fluxes across membranes. Plasma membrane isoforms of this protein extrude 1 intracellular proton in exchange for 1 extracellular sodium. The family of Na+/H+ exchangers (NHEs) consists of 9 known isoforms, NHE1-NHE9. The NHE1 isoform was the first discovered, is the best characterized, and exists on the plasma membrane of all mammalian cells. It contains an N-terminal 500 amino acid membrane domain that transports ions, plus a 315 amino acid C-terminal, the intracellular regulatory domain. The Na+/H+ exchanger is regulated by both post-translational modifications including protein kinase-mediated phosphorylation, plus by a number of regulatory-binding proteins including phosphatidylinositol-4,5-bisphosphate, calcineurin homologous protein, ezrin, radixin and moesin, calmodulin, carbonic anhydrase II, and tescalcin. The Na+/H+ exchanger is involved in a variety of complex physiological and pathological events that include regulation of intracellular pH, cell movement, heart disease, and cancer. This review summarizes recent advances in the understanding of the physiological role and regulation of this protein. 相似文献
17.
18.
The arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. 总被引:15,自引:0,他引:15
Kees Venema Francisco J Quintero Jose M Pardo Juan Pedro Donaire 《The Journal of biological chemistry》2002,277(4):2413-2418
In saline environments, plants accumulate Na(+) in vacuoles through the activity of tonoplast Na(+)/H(+) antiporters. The first gene for a putative plant vacuolar Na(+)/H(+) antiporter, AtNHX1, was isolated from Arabidopsis and shown to increase plant tolerance to NaCl. However, AtNHX1 mRNA was up-regulated by Na(+) or K(+) salts in plants and substituted for the homologous protein of yeast to restore tolerance to several toxic cations. To study the ion selectivity of the AtNHX1 protein, we have purified a histidine-tagged version of the protein from yeast microsomes by Ni(2+) affinity chromatography, reconstituted the protein into lipid vesicles, and measured cation-dependent H(+) exchange with the fluorescent pH indicator pyranine. The protein catalyzed Na(+) and K(+) transport with similar affinity in the presence of a pH gradient. Li(+) and Cs(+) ions were also transported with lower affinity. Ion exchange by AtNHX1 was inhibited 70% by the amiloride analog ethylisopropyl-amiloride. Our data indicate a role for intracellular antiporters in organelle pH control and osmoregulation. 相似文献
19.
In this study we characterized regulation of the Na+/H+ exchanger promoter in several tissue types. A conserved poly (dA:dT) region was important in regulation of the promoter. Nuclear extracts from rat myocardium and from mouse proximal tubule cells protected the poly (dA:dT) region of the NHE1 promoter. A protein from nuclear extracts also bound to the poly (dA:dT) element in gel mobility shift binding assays. The binding was specific and was removed by mutations in the poly (dA:dT) region. Characterization of the binding to the poly (dA:dT) region in gel mobility shift assays showed that it was reduced by high concentrations of the divalent cations Mg++ and Mn++. The inhibition by divalent cations was reduced by decreasing the pH of the binding assay. N-terminal sequencing of the poly (dA:dT) binding protein showed that it was a member of the HMG (high mobility group) family of nuclear proteins which are important in cell growth and proliferation. The results are the first direct detection of a protein that regulates the NHE1 promoter. 相似文献
20.
Structural and functional analysis of the Na+/H+ exchanger 总被引:1,自引:0,他引:1
The mammalian NHE (Na+/H+ exchanger) is a ubiquitously expressed integral membrane protein that regulates intracellular pH by removing a proton in exchange for an extracellular sodium ion. Of the nine known isoforms of the mammalian NHEs, the first isoform discovered (NHE1) is the most thoroughly characterized. NHE1 is involved in numerous physiological processes in mammals, including regulation of intracellular pH, cell-volume control, cytoskeletal organization, heart disease and cancer. NHE comprises two domains: an N-terminal membrane domain that functions to transport ions, and a C-terminal cytoplasmic regulatory domain that regulates the activity and mediates cytoskeletal interactions. Although the exact mechanism of transport by NHE1 remains elusive, recent studies have identified amino acid residues that are important for NHE function. In addition, progress has been made regarding the elucidation of the structure of NHEs. Specifically, the structure of a single TM (transmembrane) segment from NHE1 has been solved, and the high-resolution structure of the bacterial Na+/H+ antiporter NhaA has recently been elucidated. In this review we discuss what is known about both functional and structural aspects of NHE1. We relate the known structural data for NHE1 to the NhaA structure, where TM IV of NHE1 shows surprising structural similarity with TM IV of NhaA, despite little primary sequence similarity. Further experiments that will be required to fully understand the mechanism of transport and regulation of the NHE1 protein are discussed. 相似文献