首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palta P  Madan ML 《Theriogenology》1996,46(6):993-998
This study examined the effect of gestation on the hypophyseal responsiveness of buffalo to GnRH-induced LH and FSH release. Peripheral plasma LH and FSH concentrations were measured at 1 h before and upto 6 h after administration of GnRH (1 ug/kg body weight) or saline at Days 60, 150 and 240 of gestation in 2 groups of buffalo (n = 4 each). Basal LH concentrations did not vary at the 3 stages of gestation, while basal FSH concentrations exhibited a significant reduction (P < 0.05) from Day 60 to Day 150 of gestation. There was a significant reduction in the total LH (P < 0.05) and FSH (P < 0.01) released in response to GnRH from Day 60 to Day 240 of gestation. The duration of LH and FSH peaks and the time to attain peak concentration was not affected by the stage of gestation. The results of the present study point to a progressive decline in LH and FSH release responses to GnRH during the advancement of gestation in the buffalo.  相似文献   

2.
Nine Friesian dairy cows were treated with 2.5 micrograms GnRH i.v. at 2-h intervals for 48 h commencing between Days 3 and 8 post partum. Hormone concentrations were measured in jugular venous plasma. An episodic pattern of LH release was induced in all animals and there was no significant change in amplitude during treatment. However, cows treated between Days 7 and 8 ('late') showed higher LH episode peaks than did those treated between Days 3 and 6 ('early'). Plasma FSH concentrations showed a less clear episodic pattern in response to GnRH injection. The mean height of FSH responses to GnRH tended to be higher in the 'early' group than in the 'late' group, as did mean FSH concentrations during the pretreatment sampling period. Although clear episodic changes were not observed, GnRH treatment induced a rapid sustained rise in plasma oestradiol-17 beta concentrations, indicating the responsiveness of ovarian follicles to gonadotrophin stimulation early in the post-partum period. There was no difference in oestradiol-17 beta concentrations between the 'early' and 'late' groups during the treatment period. Only one cow exhibited preovulatory-type LH, FSH and oestradiol-17 beta surges during the 96-h post-treatment sampling period. It is concluded that: (1) responsiveness to GnRH pulses increases significantly and FSH responsiveness tends to decrease with time post partum, (2) ovarian follicles are able to secrete oestradiol-17 beta in response to GnRH-induced LH and FSH release during the early post-partum period and there is no time-dependent change in responsiveness; and (3) the lack of preovulatory surges, except in one cow, may reflect a temporary defect in the positive-feedback mechanism by which high concentrations of oestradiol-17 beta induce preovulatory gonadotrophin release.  相似文献   

3.
Effects of season, postpartum interval and short-term weaning were investigated on luteinizing hormone (LH) secretion in ewes. Blood samples were collected at 10-min intervals for 4 h (basal period). Then gonadotropin-releasing hormone (GnRH) was administered and 10 more blood samples were collected over an additional 4 h period. The effects of day post partum (5, 20 or 40) and short-term weaning (weaned Day 37, tested Day 40 post partum) on basal and GnRH-induced LH secretion were tested. Mean basal concentrations of LH for ewes on Day 5, 20 or 40 post partum ranged from 1.6 to 4.6 ng/ml and did not differ. Mean concentrations of LH during the post-GnRH sampling interval were greater (P<0.01) for ewes bled on Day 20 or 40 post partum (12.3 and 11.8 ng/ml, respectively) than for ewes bled on Day 5 or for unbred control ewes (6.7 and 5.8 ng/ml, respectively). Weaning on Day 37 depressed GnRH-induced LH secretion on Day 40 post partum (8.18 ng/ml; P<0.05). Seasonal changes in LH secretion on Day 20 or 40 post partum in January, March or June lambing ewes were also tested. There was no difference in basal or GnRH-induced LH secretion between Day 20 or 40 post partum among groups in January or March.. In June, ewes had lower (P<0.01) basal and GnRH-induced LH secretion on Day 20 post partum than ewes did on Day 40 post partum. Across month of the year, on Day 20 post partum, ewes lambing in March released more LH in response to GnRH than ewes lambing in January (P=0.07) or June (P<0.05). Response to GnRH on Day 20 post partum was similar for ewes lambing in January or June (P>0.1). Ewes lambing in January released less (P<0.01) LH on Day 40 post partum than ewes lambing in March or June; however, no difference was detected between the latter two groups (P>0.1). Thus, seasonal modifications of the releasable pool of LH may mask or modify the effect of the postpartum interval upon this endocrine response.  相似文献   

4.
The GnRH antagonist cetrorelix was given during the early (Days 1-5), mid (Days 6-10 or 5-12) or for the entire (Days 1-16) luteal phase of mares to inhibit the secretion of FSH and LH (Day 0=ovulation). Frequent blood sampling from Day 6 to Day 14 was used to determine the precise time-course of the suppression (cetrorelix given Days 6-10). Cetrorelix treatment caused a decrease in FSH and LH concentrations by 8 and 16 h, respectively, and an obliteration of the response to exogenous GnRH given 24h after treatment onset. Treatment never suppressed gonadotropin concentrations to undetectable levels; e.g. frequent sampling showed that the nadirs reached in FSH and LH were 46.2±6% and 33.1±11%, respectively, of pre-treatment concentrations. Daily FSH concentrations were decreased in all treatment groups but daily LH concentrations were lower only when treatment commenced at the beginning of the luteal phase; progesterone concentrations depended on the time of cetrorelix administration, but the changes suggested a role for LH in corpus luteum function. The inter-ovulatory interval was longer than controls when cetrorelix was given in the mid- or for the entire luteal phase, but was unaffected by treatment in the early phase. Nevertheless, in all groups, FSH concentrations were higher (P<0.05 when compared to Day 0, subsequent ovulation) approximately 6-10 days before this next ovulation. This consistent relationship suggests a stringent requirement for a GnRH-induced elevation of FSH above a threshold at, but only at, this time; i.e. approximately 6-10 days before ovulation.  相似文献   

5.
Plasma LH concentrations were monitored in 6 Hereford X Friesian suckled cows at about 80 days post partum, before and during a 14-day period of continuous s.c. infusion of GnRH (20 micrograms/h). Blood samples were collected at 10-min intervals on Days -2, -1, 1, 2, 3, 4, 7, 10, 13 and 14 (Day 1 = start of infusion). Plasma LH concentrations rose from mean pretreatment levels of 1.3 +/- 0.20 ng/ml to a maximum of 17.1 +/- 3.09 ng/ml within the first 8 h of GnRH infusion, but returned to pretreatment levels by Day 2 or 3. In 4/6 animals, the initial increase was of a magnitude characteristic of the preovulatory LH surge. In all animals, an i.v. injection of 10 micrograms GnRH, given before the start and again on the 14th day of continuous infusion, induced an increase in LH concentrations but the increase to the second injection was significantly (P less than 0.01) less (mean max. conc. 6.4 +/- 0.76 and 2.3 +/- 0.19 ng/ml). Mean LH concentrations (1.0 +/- 0.08, 1.1 +/- 0.08 and 0.9 +/- 0.06 ng/ml) and LH episode frequencies (3.3,4.3 and 3.2 episodes/6 h) did not differ significantly on Days -2,7 and 13. However, the mean amplitude of LH episodes was significantly lower (P less than 0.05) on Day 13 (1.3 +/- 0.10 ng/ml) than on Day -2 (1.8 +/- 0.16 ng/ml). Therefore, although the elevation in plasma LH concentrations that occurs in response to continuous administration of GnRH is short-lived and LH levels return to pre-infusion values within 48 h of the start of infusion, these results show that the pituitary is still capable of responding to exogenous GnRH, although the LH response to an i.v. bolus injection of GnRH is reduced. In addition, this change in pituitary sensitivity is not fully reflected in endogenous patterns of episodic LH secretion.  相似文献   

6.
The effect of naloxone on GnRH-induced LH and FSH release was measured in buffaloes in luteal phase of estrous cycle. Animals were administered intravenously, naloxone/saline (50 mg/injection) every 15 min for 3 hr followed by GnRH (100 micrograms). Peripheral plasma LH and FSH concentrations were measured in blood samples collected at 15 min intervals from 1 hr prior to beginning of naloxone/saline treatment up to 3 hr post GnRH administration and every 30 min for the subsequent 3.5 hr. Between the animals of Group I administered naloxone and those of Group II given saline, GnRH-induced peak LH and FSH concentrations, the total LH and FSH released in response to GnRH, and the time to peak LH and FSH concentrations were not significantly different. The results of the present study suggest the absence of a direct effect of naloxone on pituitary responsiveness to GnRH.  相似文献   

7.
GnRH (250 μg) was administered intravenously in a total of 121 experiments carried out on 21 cows during the period from 180 days ante (ap) to 50 days post partum (pp). Additionally in one group of animals prolactin secretion was inhibited after parturition by means of 3 intramuscular injections of 150 mg Bromocryptine (CB-154) on days 1, 4 and 7 pp. LH response (peak height, area under the dose response curve) was about the same from 150 to 60 days ap, then decreased significantly towards parturition and was lowest during the first 6 days post partum. At a later time the Lh response was more pronounced than during pregnancy. The FSH response decreased significantly during the last 9 days ap, remained low during the frist 6 days pp and increased thereafter. There was no significant influence of prolactin inhibition on LH and FSH values (except for the total FSH released on day 50 pp). Whereas in all GnRH treated animals pronounced pituitary gonadotropin responsiveness was measurable (except during the period around parturition), the variation of the LH response pp was much higher than ap. The LH results gave some indication of the wide range of response pattern for this hormone after parturition which might be one reason for the individuality in the initiation of a new estrous cycle post partum in cattle.  相似文献   

8.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

9.
Sixteen lactating, normally cycling Holstein cows were used to study 1) the effects of sometribove (recombinant methionyl bST) administration on basal LH concentrations and 2) the pituitary response to a GnRH challenge during the breeding period. The cows received a 3-injection regimen of PGF2a for estrus synchronization between 40 and 50 d post partum, and were assigned to a control group or to sometribove treatment (25 mg/d), which began 54 to 59 d post partum. Duration of the bST treatment was 24 d. On Day 10 of the estrous cycle following the third PGF2a injection, blood samples were collected to determine basal concentrations of LH. Immediately following this collection period, a GnRH challenge (100 mug) was used to measure the responsiveness of the pituitary based on the subsequent LH peak. Milk production of sometribove-treated cows increased 7% (2.1 kg/d) above that of the controls. Sometribove did not affect basal or GnRH-induced LH concentrations. Plasma progesterone concentrations during the luteal phase were similar between treatments. Sometribove increased milk yield with no apparent effects on basal or GnRH-induced LH concentrations during the breeding period.  相似文献   

10.
Suckling, a common practice in smallholder dairy-farming systems in the developing world, delays the onset of post-partum ovarian activity in dairy buffalo. The present study was designed to assess the effect of suckling on pituitary function in lactating buffaloes 25-35 days post-partum. Six suckled and nine non-suckled buffaloes were challenged intravenously with a bolus injection of GnRH (20microg buserelin acetate; Receptal). Heparinized venous blood samples were collected at 15min intervals for 2h before and up to 4h after GnRH for luteinizing hormone (LH) estimation. Pretreatment basal LH concentrations were similar in the suckled (0.6+/-0.2ng/ml) and the non-suckled (0.5+/-0.1ng/ml) buffaloes. All but one suckled buffaloes released a LH surge, starting 15-60min post-GnRH treatment, which lasted for 180-225min. While one suckled buffalo did not respond to GnRH, the LH response in the remaining suckled buffaloes was significantly less than in the non-suckled buffaloes in terms of peak LH concentrations (14.3+/-2.7ng/ml versus 26.2+/-4.3ng/ml) and area under the LH curve (1575.6+/-197.4mm(2) versus 2108.9+/-323.9mm(2)). The LH response was least in suckled buffaloes challenged with GnRH while in the luteal phase of an oestrus cycle and with plasma progesterone concentration >1ng/ml. In conclusion, suckling suppressed pituitary responsiveness to exogenous GnRH challenge in post-partum buffaloes.  相似文献   

11.
J Y Yu  H Namiki  A Gorbman 《Life sciences》1978,22(3):269-281
A study was made of the separate patterns of luteinizing hormone (LH) and follicle stimulating hormone (FSH) release from isolated rat pituitary tissue evoked by synthetic gonadotropin releasing hormone (GnRH) or female hypothalamic extracts (HE), respectively, in a continuous perifusion system. Under defined conditions, gonadotropin release from hemipituitaries was relatively stable and reproducible. Absolute levels of LH and FSH release evoked by HE in terms of their GnRH content were always greater than those following exposure to synthetic GnRH at varying doses. Synthetic GnRH released more FSH than LH. In contrast, the HE released slightly higher levels of LH than FSH. The data suggest that the female rat hypothalamus contains substances other than GnRH, capable of releasing both LH and FSH. It is possible that such unidentified components can modify the hypophysial action of GnRH, resulting in particular circumstances in a differential release of LH and FSH.  相似文献   

12.
The present study investigated pulsatile and circadian variations in the circulatory levels of inhibin, gonadotrophins and testosterone. Six adult buffalo bulls (6 to 7 yr of age) were fitted with indwelling jugular vein catheters, and blood samples were collected at 2-h intervals for a period of 24 h and then at 15-min interval for 5 h. Plasma concentrations of inhibin, FSH, LH and testosterone were determined by specific radioimmunoassays. Plasma inhibin levels in Murrah buffalo bulls ranged between 0.201 to 0.429 ng/mL, with a mean of 0.278 +/- 0.023 ng/mL. No inhibin pulses could be detected during the 15-min sampling interval. Plasma FSH levels ranged between 0.95 to 3.61 ng/mL, the mean concentration of FSH over 24 h was 1.66 +/- 0.25 ng/mL. A single FSH pulse was detected in 2 of 6 bulls. The LH levels in peripheral circulation ranged between 0.92 to 9.91 ng/mL, with a mean concentration of 3.33 +/- 1.02 ng/mL. Pulsatility was detected in LH secretion with an average of 0.6 pulses/h. Plasma testosterone levels in 4 buffalo bulls ranged from 0.19 to 2.99 ng/mL, the mean level over 24 h were 1.34 +/- 0.52 ng/mL. Testosterone levels in peripheral circulation followed the LH secretory pattern, with an average of 0.32 pulses/h. The results indicate parallelism in inhibin, FSH and LH, and testosterone secretory pattern. Divergence in LH and FSH secretory patterns in adult buffalo bulls might be due to the presence of appreciable amounts of peripheral inhibin.  相似文献   

13.
The aim of this study was to determine the time taken for complete uterine involution in Bulgarian Murrah buffaloes following normal parturition and oxytocin stimulated milking; and to establish the time course of the change in size of the uterine horns, the cervix and caruncles between parturition and involution by means of ultrasonography. There were 17 animals in the study aged 3-6 years and average parity of 2.17 ± 0.18. They were administered 20 IU oxytocin 15 min before each milking. Rectal palpation and transrectal ultrasonography were performed at 3 d intervals from Days 1 to 34 post partum. The involution of the non-gravid and gravid uterine horns, and the cervix was complete by Days 22 and 25 post partum when their diameters were 2.7 ± 0.4 cm, 2.8 ± 0.3 cm and 3.12 ± 0.4 cm, respectively. Caruncles underwent rapid regression until Day 10 post partum. It was not possible to determine the dimensions of the caruncles after that time. The cumulative percentage of animals whose uterus was located in the pelvic cavity increased from 24% at Day 10 post partum to 100% at Day 34 post partum. The combination of rectal palpation and transrectal ultrasonography provided a reliable method of evaluating changes in the uterus over time and determining the time of uterine involution. The present study showed that complete uterine involution, with the uterus located in the pelvic cavity, was achieved by Day 34 after parturition in all 17 Bulgarian Murrah buffaloes treated with oxytocin before milking.  相似文献   

14.
No difference was found between 5 intact ewes and 5 ewes from which the CL had been excised at Day 70 of pregnancy in the plasma concentration of progesterone at Day 140, and concentrations of progesterone remained below 0.2 ng/ml during the first 20 days post partum. Plasma concentrations of LH, frequency and amplitude of LH pulses were low at Day 140 and increased considerably, particularly in the CL-excised ewes, as early as Day 5 post partum. No significant differences were found between the two groups of ewes in the mean plasma concentrations of FSH for any of the 5 stages examined. Taken together, these results suggest that some factor, other than progesterone, associated with the CL of pregnancy is involved in the inhibition of pulsatile LH secretion during the early post-partum period.  相似文献   

15.
Administration of charcoal-treated bovine follicular fluid to Damline ewes twice daily (i.v.) from Days 1 to 11 of the luteal phase (Day 0 = oestrus) resulted in a delay in the onset of oestrous behaviour and a significant increase in ovulation rate following cloprostenol-induced luteolysis on Day 12. During follicular fluid treatment plasma levels of FSH in samples withdrawn just before injection of follicular fluid at 09:00 h (i.e. 16 h after previous injection of follicular fluid) were initially suppressed, but by Day 8 of treatment had returned to those of controls. However, the injection of follicular fluid at 09:00 h on Day 8 still caused a significant suppression of FSH as measured during a 6-h sampling period. Basal LH levels were higher throughout treatment due to a significant increase in amplitude and frequency of pulsatile secretion. After cloprostenol-induced luteal regression at the end of treatment on Day 12, plasma levels of FSH increased 4-fold over those of controls and remained higher until the preovulatory LH surge. While LH concentrations were initially higher relative to those of controls, there was no significant difference in the amount of LH released immediately before or during the preovulatory surge. These results suggest that the increase in ovulation rate observed during treatment with bovine follicular fluid is associated with the change in the pattern of gonadotrophin secretion in the luteal and follicular phases of the cycle.  相似文献   

16.
Peter AT  Bosu WT  Gilbert RO 《Theriogenology》1990,33(5):1011-1014
An experiment was conducted to test the hypothesis that Escherichia coli (E. coli ) endotoxin is readily absorbed from uteri of early postpartum cows and that the absorbed endotoxin provokes systemic relcase of prostaglandins. Eleven postpartum Holstein dairy cows (aged 3 to 7 yr) with normal puerperium were selected and divided into a treatment group (n=7), which received intrauterine infusions of E. coli endotoxin, and a control group (n=4), which received intrauterine infusions of 10 ml of saline on Days 5 and 20 post partum. Blood samples were collected once every 30 min for 6 h starting from the time of infusion. Harvested sera samples were analyzed for concentrations of stable metabolites of prostacyclin (PCM), prostaglandin F(2alpha) (PGFM), and thromboxane A(2) (TXB(2)). Plasma samples were qualitatively tested for the presence of endotoxin. Endotoxin was detected in the plasma samples of cows that received endotoxin on Day 5 post partum 4 h after the infusion. Endotoxin was not detected in any of the samples from control cows on Days 5 and 20 post partum or from treatment group cows on Day 20 post partum. Cows treated on Day 5 post partum showed increases in serum PGFM concentrations from 710 +/-64pg/ml to peak concentrations of 1223 +/- 47 pg/ml within 2 h, followed by a decline to baseline concentrations within 4 h. The amount of PGFM released in treated cows on Day 5 post partum was higher (P < 0.05) than in control cows on Day 5 or in treated and control cows on Day 20 post partum. Serum PCM concentrations increased from 156+/-24 pg/ml to peak concentrations of 1348+/-127 pg/ml within 1 h. The amount of PCM released in treated cows on Day 5 postpartum was higher (P< 0.05) than in control cows on Day 5 or in treated and control cows on Day 20 post partum. The TXB(2) concentrations increased from 315+/-38 pg/ml to peak concentrations of 5043 +/- 242 pg/ml within 1 h and fell to baseline concentrations within 5 h. The amount of TXB(2) concentrations released in treated cows on Day 5 post partum was significant (P < 0.05) compared with those of cows in the other groups. The results support the hypothesis that uteri of early postpartum cows are capable of absorbing endotoxin, and the absorbed endotoxin provokes changes in the serum concentrations of prostanoids.  相似文献   

17.
Jugular venous blood samples were obtained from 7 dairy cows every 10 min for 10-19 h during the early- or mid-luteal phase of the oestrous cycle, and each cow was given 1 or 2 i.v. injections of 100 micrograms synthetic Gn-RH. Four of these cows were also sampled in a different cycle with no treatment being administered. Peaks of plasma LH, FHS and progesterone were detected in each animal in the absence of treatment; those of LH and progesterone often occurred in parallel. Injection of Gn-RH was always followed by a significant increase in plasma LH and progesterone concentrations and in most cases by a significant FSH increase. There was a significant temporal relationship between the peaks of all 3 hormones. A further 8 cows were sampled during the first 10 days post partum when the mean plasma progesterone concentration was low. An i.v. injection of 200 micrograms synthetic Gn-RH was given to each animal and this resulted in a significant increase in plasma LH and FSH concentrations, but in only one cow was the Gn-RH injection followed by a significant increase in plasma progesterone concentration. The LH response to Gn-RH injection was significantly less in cows injected on or before Day 5 post partum than in cows injected on Days 7-10 post partum.  相似文献   

18.
Immature rats and adult hamsters were killed on Days 2, 4 or 8 of pregnancy (Day 1 = sperm positive vaginal smear). Dispersed luteal cells (5 X 10(4) cells) were incubated for 2 h in the absence or presence of graded doses of ovine LH. In the absence of LH, incubation of rat luteal cells compared to hamster cells produced about 3-6-fold as much progesterone, 26-66 times as much 20 alpha-dihydroprogesterone and about the same amounts of 17 alpha-hydroxyprogesterone. For the rat, 1 ng LH was the minimal dose which stimulated synthesis of progesterone and 17 alpha-hydroxyprogesterone by luteal cells on Days 2 and 4 whereas 10 ng LH stimulated maximal production of progesterone by Day-8 luteal cells. As pregnancy progressed from Day 2 to Day 8, there was an inverse relationship between the levels of progesterone and 20 alpha-dihydroprogesterone accumulated by rat luteal cells. For the hamster, 1 ng LH significantly stimulated accumulation of progesterone and 17 alpha-hydroxyprogesterone by Day-2 luteal cells but not by Day-4 or Day-8 cells. Hamster luteal cells on Day 4 produced the highest levels of progesterone in response to 10 or 100 ng LH, with a maximal rate of accumulation by Day-8 cells with 10 ng LH.  相似文献   

19.
The roles of the pulsatile release of LH in the functional development and maintenance of the corpus luteum (CL) during the estrus cycle in the goat were examined using a potent GnRH antagonist. In Experiment 1, to assess the inhibitory effects of the GnRH antagonist on the release of LH during the estrus cycle, 9 goats were divided into 3 groups. Goats in Group I received only saline on Days 0 (day of ovulation), 5, 10 and 15. Goats in Group II received the GnRH antagonist (50 microg/kg, s.c.) on the days mentioned for Group I to inhibit endogenous LH during the periods of luteal development and maintenance. Goats in Group III received saline on Days 0 and 5 and then the GnRH antagonist on Days 10 and 15 to inhibit LH during the period of luteal maintenance. Serial blood sampling took place on Days 1, 3, 5, 8, 13 and 18 to characterize the LH pulses. The LH pulses were observed throughout the estrus cycle in Group I but were completely abolished in Group II. In Group III, the pulsatile release of LH was observed from Day 1 to 8, but the LH pulses were completely abolished on Days 13 and 18. In Experiment 2, 16 goats were divided into the same 3 groups as in Experiment 1 to examine the effects of the GnRH antagonist on the luteal function. The concentration of progesterone in the plasma in Group I increased after ovulation, reached a maximum level around Day 12, and subsequently returned to the basal level on Day 17. The concentrations of progesterone in Group II rose after ovulation, but reached a plateau around Day 6 and maintained the level up to Day 9, then rapidly decreased from Day 9 to 10 to the basal level. The concentrations of progesterone in Group II were lower on Days 7 to 15 than those in Group I (P<0.01). The concentrations of progesterone in Group III increased after ovulation, reached a maximum level around Day 8, then dropped from Day 10 to 13 to the basal level. The concentrations of progesterone in Group III on Days 11 to 15 were lower than those in Group I (P<0.05 on Day 11, P<0.01 on Days 12 to 15). These results demonstrate that endogenous LH is essential for normal development and maintenance of the CL function during the estrus cycle in the goat. Further, this study suggests that while the functional maintenance of the caprine CL depends entirely on LH support, such functional dependence during early CL development is only partial.  相似文献   

20.
Three experiments were conducted on Texel ewes to study the influence of prostaglandin F(2alpha) (PGF(2alpha)), prolactin (PRL), estradiol (E(2)), and gonadotrophin releasing hormone (GnRH) on postpartum reproductive activity. In Experiment 1, oral administration of indomethacin (25 to 50 mg/day/ewe) from Day 3 post partum to the first detected estrus inhibited plasma 13, 14-dihydro-15-keto, PGF(2alpha) (PGFM) concentrations (P < 0.0001). This treatment resulted in an earlier rise in the frequency and amplitude of luteinizing hormone (LH) pulses and a resumption of estrous behavior (P < 0.05), while ovarian activity estimated by progesterone (P(4)) concentrations resumed to the same extent in treated ewes and controls. Bromocriptine treatment (2.5 mg/day/ewe) reduced plasma PRL levels (P < 0.0001) but had no effect on ovarian activity as evidenced by P(4) and resumption of estrus or on either the frequency or amplitude of the LH pulse. In Experiment 2, a single injection of GnRH agonist (42 mcg of buserelin/ewe) on Day 16 post partum resulted in an abrupt elevation of plasma LH concentrations; mean LH values were 18 to 27 times higher when compared with those of the control ewes. Two days after this treatment, ovulations occurred in 5 of the treated ewes and in 2 of the control ewes. This induced ovarian activity was not associated with estrous behavior; however, after an adequate subsequent luteal phase all the treated ewes displayed estrus, the resumption of estrus thus being earlier in treated than in control ewes (P < 0.01). In Experiment 3, E(2) supplementation from Day 16 to Day 28 post partum increased the number of LH pulses per 6 hours in suckling ewes (P < 0.05) and induced earlier resumption of estrus in dry ewes but not in suckling ewes (P < 0.01). Luteal function was detected about 5 and 8 days after the insertion of E(2) implants in 4 dry ewes and in 2 suckling ewes, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号