首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In mammals, a subset of genes inherit gametic marks that establish parent of origin-dependent expression patterns in the soma ([1] and references therein). The currently most extensively studied examples of this phenomenon, termed genomic imprinting, are the physically linked Igf2 (insulin-like growth factor II) and H19 genes, which are expressed mono-allelically from opposite parental alleles [1] [2]. The repressed status of the maternal Igf2 allele is due to cis elements that prevent the H19 enhancers [3] from accessing the Igf2 promoters on the maternal chromosome [4] [5]. A differentially methylated domain (DMD) in the 5' flank of H19 is maintained paternally methylated and maternally unmethylated [6] [7]. We show here by gel-shift and chromatin immunopurification analyses that binding of the highly conserved multivalent factor CTCF ([8] [9] and references therein) to the H19 DMD is methylation-sensitive and parent of origin-dependent. Selectively mutating CTCF-contacting nucleotides, which were identified by methylation interference within the extended binding sites initially revealed by nuclease footprinting, abrogated the H19 DMD enhancer-blocking property. These observations suggest that molecular mechanisms of genomic imprinting may use an unusual ability of CTCF to interact with a diverse spectrum of variant target sites, some of which include CpGs that are responsible for methylation-sensitive CTCF binding in vitro and in vivo.  相似文献   

2.
The present study shows that the H19 and Igf2r genes, which are imprinted and expressed solely from maternal alleles, are expressed in an unregulatable manner in mouse uniparental, androgenetic, and parthenogenetic fetuses at day 9.5 of gestation. In the androgenetic fetuses, the H19 and Igf2r genes were respectively expressed at 12 and 40% of the levels in biparental fetuses. In addition, the expression of both genes was excessive (1259 and 482%, respectively) in the parthenotes. These expressions of the imprinted genes were not regulated by methylation in the regulatory regions. Moreover, the expression of the antisense Igf2r RNA (Air) was also excessive and was not correlated with Igf2r gene expression in the uniparental fetuses. Taken together, these results indicate that the parental specific expression of imprinted genes is not maintained in particular genes in uniparental embryos, which in turn suggests that both parental genomes are required to establish maternal specific expression of the H19 and Igf2r genes by trans-acting mechanisms.  相似文献   

3.
4.
5.
Imprinted genes play important roles in the mammalian development. In the parthenogenetic embryos (PE) there is only expression of maternally expressed genes. Therefore, PEs are appropriate experimental models to study genomic imprinting controlling mechanisms. The maternally expressed H19 and paternally expressed Igf2 are reciprocally imprinted genes in normal embryos. Here we studied effect of transforming growth factor alpha (TGFalpha) treatment in vitro (10 ng/ml at the morula stage) on the expression of Igf2/H19 locus in mice PE (9.5-days of gestation, 25 somites) and their placentas (PP). Using RT-PCR we showed that TGFalpha reactivated maternally imprinted Igf2 gene in parthenogenetic embryos and placentas. In spite of similar Tgfalpha expression in the pre-implantation stages, its expression in the 9.5-day parthenogenetic embryos is significantly less than in normal embryos (NE). In our experiments it was shown that reactivation of Igf2 gene occurred independently of H19 gene. In vitro TGFalpha treatment of mouse PE reactivated paternally expressed Igf2 gene in the PE and PP. In the PE and PP both Igf2 and H19 were expressed. It seems that TGFalpha can play an important role as modulator of the Igf2/H19 locus.  相似文献   

6.
The imprinted Igf2 gene is active only on the paternal allele in most tissues. Its imprinting involves a cis-acting imprinting-control region (ICR) located upstream of the neighboring and maternally expressed H19 gene. It is thought that differential methylation of the parental alleles at the ICR is crucial for parental imprinting of both genes. Differentially methylated regions (DMRs) have also been identified within the Igf2 gene and their differential methylation is thought to be established during early development. To gain further insight into the function of these DMRs, we performed a quantitative analysis of their allelic methylation levels in different tissues during fetal development and the postnatal period in the mouse. Surprisingly, we found that the methylation levels of Igf2 DMRs vary extensively during fetal development, mostly on the expressed paternal allele. In particular, in skeletal muscle, differential allelic methylation in both DMR 1 and DMR 2 occurs only after birth, whereas correct paternal monoallelic expression is always observed, including in the embryonic stages. This suggests that differential methylation in the DMR 1 and DMR 2 of the Igf2 gene is dispensable for its imprinting in skeletal muscle. Furthermore, progressive methylation of the Igf2 paternal allele appears to be correlated with concomitant postnatal down-regulation and silencing of the gene. We discuss possible relations between Igf2 allelic methylation and expression during fetal development.  相似文献   

7.
8.
Parent-of-origin-specific expression of the mouse insulin-like growth factor 2 (Igf2) gene and the closely linked H19 gene are regulated by an intervening 2 kb imprinting control region (ICR), which displays parentspecific differential DNA methylation [1] [2]. Four 21 bp repeats are embedded within the ICR and are conserved in the putative ICR of human and rat Igf2 and H19, suggesting that the repeats have a function [3] [4]. Here, we report that prominent DNA footprints were found in vivo on the unmethylated maternal ICR at all four 21 bp repeats, demonstrating the presence of protein binding. The methylated paternal ICR displayed no footprints. Significantly, the maternal-specific footprints were localized to putative binding sites for CTCF, a highly conserved zinc-finger DNA-binding protein with multiple roles in gene regulation including that of chromatin insulator function [5] [6]. These results strongly suggest that the maternal ICR functions as an insulator element in regulating mutually exclusive expression of Igf2 and H19 in cis.  相似文献   

9.
H19 and Igf2 are closely linked, reciprocally imprinted genes which lie on distal chromosome 7 in the mouse. Data suggests that common elements are used for expression and imprinting of both genes, and simple models have been proposed based on the presence of a single set of enhancers located downstream of H19. In this study we have investigated the H19 expression pattern from a 130 kb YAC transgene, which imprints H19 appropriately at ectopic loci. However, we show that while enhancers for expression in many cell types are present on the YAC, those for expression in mesodermal components of the heart, kidney, lung and thymus are located at a greater distance. Based on the available evidence, we conclude that regulation of H19 is complex, requiring contribution from at least three different sets of cell-type specific enhancers. Thus, the mechanism of reciprocal imprinting of H19 and Igf2 utilises different regulatory elements in different cell types during mouse development.  相似文献   

10.
The mouse insulin-like growth factor II (Igf2) and H19 genes are located adjacent to each other on chromosome 7q11-13 and are reciprocally imprinted. It is believed that the allelic expression of these two genes is regulated by the binding of CTCF insulators to four parent-specific DNA methylation sites in an imprinting control center (ICR) located between these two genes. Although monoallelically expressed in peripheral tissues, Igf2 is biallelically transcribed in the CNS. In this study, we examined the allelic DNA methylation and CTCF binding in the Igf2/H19 imprinting center in CNS, hypothesizing that the aberrant CTCF binding as one of the mechanisms leads to biallelic expression of Igf2 in CNS. Using hybrid F1 mice (M. spretus males x C57BL/6 females), we showed that in CNS, CTCF binding sites in the ICR were methylated exclusively on the paternal allele, and CTCF bound only to the unmethylated maternal allele, showing no differences from the imprinted peripheral tissues. Among three other epigenetic modifications examined, histone H3 lysine 9 methylation correlated well with Igf2 allelic expression in CNS. These results suggest that CTCF binding to the ICR alone is not sufficient to insulate the Igf2 maternal promoter and to regulate the allelic expression of the gene in the CNS, thus challenging the aberrant CTCF binding as a common mechanism for lack of Igf2 imprinting in CNS. Further studies should be focused on the identification of factors that are involved in histone methylation and CTCF-associated factors that may be needed to coordinate Igf2 imprinting.  相似文献   

11.
12.
Parental genomes have reciprocal phenotypic effects during development in the mouse because they are programmed (imprinted) with germ line-specific epigenetic modifications. These epigenetic modifications are inherited after fertilisation and they determine whether the maternal or the paternal allele of an 'imprinted' gene is expressed. Four such imprinted genes have so far been identified; the paternal genes of Igf2, and Snrpn, and the maternal genes of Igf2r and H19 are preferentially expressed during development. Igf2 and H19 are closely linked on chromosome 7 and show remarkably similar temporal and spatial patterns of expression. A mechanistic, and possibly a functional link may exist in the reciprocal imprinting of H19 and Igf2. The paternal H19 gene is apparently repressed by DNA methylation in the promoter region. This modification is not inherited from sperm but introduced after fertilisation. The nature of the primary germ line imprint therefore remains to be determined.  相似文献   

13.
14.
15.
IGFII, the peptide encoded by the Igf2 gene, is a broad spectrum mitogen with important roles in prenatal growth as well as cancer progression. Igf2 is transcribed from the paternally inherited allele, whereas the linked H19 is transcribed from the maternal allele. Igf2 imprinting is thought to be maintained by differentially methylated regions (DMRs) located at multiple sites such as upstream of H19 and Igf2 and within Kvlqt1 loci. Biallelic expression (loss of imprinting (LOI)) of Igf2 is frequently observed in cancers, and a subset of Wilms' and intestinal tumors have been shown to exhibit abnormal methylation at H19DMR associated with loss of maternal H19 expression, but it is not known whether such changes are common in other neoplasms. Because cancers consist of diverse cell populations with and without Igf2 LOI, we established four independent monoclonal cell lines with Igf2 LOI from mouse hepatic tumors. We here demonstrate retention of normal differential methylation at H19, Igf2, or Kvlqt1 DMR by all of the cell lines. Furthermore, H19 was found to be expressed exclusively from the maternal allele, and levels of CTCF, a multifunctional nuclear factor that has an important role in the Igf2 imprinting, were comparable with those in normal hepatic tissues with no mutational changes detected. These data indicate that Igf2 LOI in tumor cells is not necessarily linked to abnormal methylation at H19, Igf2, or Kvlqt1 loci.  相似文献   

16.
17.
18.
The reciprocally imprinted H19 and Igf2 genes form a co-ordinately regulated 130 kb unit in the mouse controlled by widely dispersed enhancers, epigenetically modified silencers and an imprinting control region (ICR). Comparative human and mouse genomic sequencing between H19 and Igf2 revealed two novel regions of strong homology upstream of the ICR termed H19 upstream conserved regions (HUCs). Mouse HUC1 and HUC2 act as potent enhancers capable of driving expression of an H19 reporter gene in a range of mesodermal tissues. Intriguingly, the HUC sequences are also transcribed bi-allelically in mouse and human, but their expression pattern in neural and endodermal tissues in day 13.5 embryos is distinct from their enhancer function. The location of the HUC mesodermal enhancers upstream of the ICR and H19, and their capacity for interaction with both H19 and Igf2 requires critical re-evaluation of the cis-regulation of imprinted gene expression of H19 and Igf2 in a range of mesodermal tissues. We propose that these novel sequences interact with the ICR at H19 and the epigenetically regulated silencer at differentially methylated region 1 (DMR1) of Igf2.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号