首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用RAPD技术对分离自我国的13株Epichlo?spp.和9株Neotyphodiumspp.的禾本科植物内生真菌进行了遗传多样性分析,同时对其中的4株进行了rDNA-ITS序列分析及系统发育研究。RAPD分析结果显示:原产自我国的菌株与原产自欧洲的菌株N.uncinatum之间亲缘关系较远;我国的21个菌株之间也存在一定的遗传多样性。rDNA-ITS序列分析表明:原产自我国的菌株聚为一枝,表明我国的Neotyphodium属真菌很有可能直接由我国的Epichlo?属真菌演化而来的新的类群;我国的Epichlo?属真菌有可能和国外推测的一个未确定的Neotyphodium属真菌的杂交进化起源(LAC)有关。  相似文献   

2.
Members of the genus Neotyphodium are asexual, seedborne, protective fungal endophytes of cool season grasses that have likely evolved either directly from sexual Epichlo?; species, or by the interspecific hybridization of distinct lineages of Epichlo?; and Neotyphodium. We investigated the evolutionary origins of Neotyphodium endophytes from several grasses that are indigenous to the Southern Hemisphere using a multiple-gene phylogenetic approach. Intron regions of the genes encoding β-tubulin (tub2), translation elongation factor 1-α (tef1) and actin (act1) were amplified by polymerase chain reaction and sequenced. Phylogenetic analyses of these sequences, aligned with homologous sequences from Epichlo?; spp., revealed the evolutionary origins of the Southern Hemisphere endophytes, where one lineage of apparently non-hybrid origin, and three lineages of unique interspecific hybrid origin were identified. On the basis of morphology, host range and evolutionary history, we propose three new species of Neotyphodium. Neotyphodium aotearoae was isolated from Echinopogon ovatus populations from New Zealand and Australia, and comprised a unique, apparently non-hybrid lineage within the Epichlo?; species phylogeny. In contrast, an interspecific hybrid lineage was identified from two Australian Ec. ovatus populations, whose ancestry apparently involved lineages closely related to extant E. festucae and an E. typhina genotype similar to that of isolates from Poa pratensis. Endophytes infecting South African Melica racemosa and M. decumbens (dronkgras) appeared to be hybrids of E. festucae and N. aotearoae or close relatives. The names N. australiense and N. melicicola are proposed for these two hybrid lineages, respectively. The origin of N. tembladerae, an established endophyte species from South American Poa and Festuca spp., was also investigated. Neotyphodium tembladerae appeared to be of hybrid origin, involving E. festucae and an E. typhina genotype similar to that of isolates from Poa nemoralis. The results of this study highlight the widespread occurrence of interspecific hybrid Neotyphodium lineages on a global scale, and the extent of endophyte gene-flow between the Northern and Southern Hemispheres.  相似文献   

3.
Lolines (saturated 1-aminopyrrolizidines with an oxygen bridge) are insecticidal alkaloids produced in symbioses of certain Epichlo? (anamorph-Neotyphodium) species (fungal endophytes) with grasses, particularly of the genera Lolium and Festuca. Prior to the present study, it was unknown whether lolines were of plant or fungal origin. Neotyphodium uncinatum, the common endophyte of meadow fescue (Lolium pratense=Festuca pratensis) produced loline, N-acetylnorloline, and N-formylloline when grown in the defined minimal media at pH 5.0-7.5, with both organic and inorganic nitrogen sources and sugars as carbon sources. In contrast, lolines were not detected in complex medium cultures. GC-MS and 13C NMR spectroscopic analyses confirmed the identity of the alkaloids isolated from the defined medium cultures. Lolines accumulated to ca. 700 mg/l (4 mM) in cultures with 16.7 mM sucrose and 15-30 mM asparagine, ornithine or urea. Kinetics of loline production and fungal growth were assessed in defined medium with 16.7 mM sucrose and 30 mM ornithine. The alkaloid production rate peaked after the onset of stationary phase, as is common for secondary metabolism in other microbes.  相似文献   

4.
5.
The epichlo? endophytes are systemic, constitutive, and often vertically transmitted fungal symbionts of grass species in subfamily Po?ideae. Prior studies indicate that several asexual epichlo? endophytes (Neotyphodium species) have evolved directly from sexual (Epichlo?) species, whereas others evolved by hybridization between two or more endophyte species. In this paper, we investigate the phylogenies of 27 Neotyphodium spp. isolates from 10 native grass species (in 4 tribes) in 22 populations throughout Argentina. Relationships among these fungi and a worldwide collection of epichlo? endophytes were estimated by phylogenetic analysis of sequences from variable portions (mainly introns) of genes for beta-tubulin (tub2) and translation elongation factor 1-alpha (tef1). Most of the Argentine endophyte isolates were interspecific hybrids of Epichlo? festucae and E. typhina. Only one isolate was a hybrid of a different ancestry, and three isolates were apparently non-hybrid endophytes. These results indicate that interspecific hybridization, which promotes genetic variation, was common during the evolution of the endophytes of Argentine grasses.  相似文献   

6.
Fungal endophytes of the genus Neotyphodium are common in temperate pasture grass species and confer both beneficial and deleterious agronomic characteristics to their hosts. The aim of this study was to develop molecular markers based on simple sequence repeat (SSR) loci for the identification and assessment of genetic diversity among Neotyphodium endophytes in grasses. Expressed sequence tags (ESTs) from both Neptyphodium coenophialum and Neotyphodium lolii were examined, and unique SSR loci were identified in 9.7% of the N. coenophialum sequences and 6.3% of the N. lolii sequences. A variety of SSRs were present, although perfect trinucleotide repeat arrays were the most common. Primers were designed to 50 SSR loci from N. coenophialum and 57 SSR loci from N. lolii and were evaluated using 20 Neotyphodium and Epichlo? isolates. A high proportion of the N. coenophialum and N. lolii primers produced amplification products from the majority of isolates and most of these primers detected genetic variation. SSR markers from both N. coenophialum and N. lolii detected high levels of polymorphism between Neotyphodium and Epichlo? species, and low levels of polymorphism within N. coenophialum and N. lolii. SSR markers may be used in appropriate combinations to discriminate between species. Comparison with amplified fragment length polymorphism (AFLP) data demonstrated that the SSR markers were informative for the assessment of genetic variation within and between endophyte species. These markers may be used to identify endophyte taxa and to evaluate intraspecific population diversity, which may be correlated with variation for endophyte-derived agronomic traits.  相似文献   

7.
The insecticidal loline alkaloids, produced by Neotyphodium uncinatum and related endophytes, are exo-1-aminopyrrolizidines with an ether bridge between C-2 and C-7. Loline alkaloids vary in methyl, acetyl, and formyl substituents on the 1-amine, which affect their biological activity. Enzymes for key loline biosynthesis steps are probably encoded by genes in the LOL cluster, which is duplicated in N. uncinatum, except for a large deletion in lolP2. The role of lolP1 was investigated by its replacement with a hygromycin B phosphotransferase gene. Compared to wild type N. uncinatum and an ectopic transformant, DeltalolP1 cultures had greatly elevated levels of N-methylloline (NML) and lacked N-formylloline (NFL). Complementation of DeltalolP1 with lolP1 under control of the Emericella nidulans trpC promoter restored NFL production. These results and the inferred sequence of LolP1 indicate that it is a cytochrome P450, catalyzing oxygenation of an N-methyl group in NML to the N-formyl group in NFL.  相似文献   

8.
Epichlo? festucae and related mutualistic symbionts of grasses.   总被引:1,自引:0,他引:1  
Epichlo? and Neotyphodium species (Ascomycota) are mutualistic symbionts (endophytes) of temperate grasses, to which they impart numerous and profound fitness benefits. Epichlo? festucae, a common symbiont of Festuca, Lolium,and Koeleria spp., is a model for endophyte research that is amenable to Mendelian and molecular genetic analysis. Characteristics of E. festucae include: (i) production of the anti-insect alkaloids peramine and lolines, (ii) production of the anti-vertebrate alkaloids lolitrem B and ergovaline, (iii) efficient vertical transmission via host seeds, (iv) a mildly pathogenic state associated with the E. festucae sexual cycle, and (v) a clear role in enhancing survival of host plants. Genetic analysis of alkaloid production has recently begun. Also, physiological and ultrastructural studies suggest that signals communicated between E. festucae and host plants ensure an exquisitely balanced interaction to the mutual benefit of both partners. Several mutualistic Neotyphodium species are hybrids between E. festucae and other endophyte species.  相似文献   

9.
Spiering MJ  Moon CD  Wilkinson HH  Schardl CL 《Genetics》2005,169(3):1403-1414
Loline alkaloids are produced by mutualistic fungi symbiotic with grasses, and they protect the host plants from insects. Here we identify in the fungal symbiont, Neotyphodium uncinatum, two homologous gene clusters (LOL-1 and LOL-2) associated with loline-alkaloid production. Nine genes were identified in a 25-kb region of LOL-1 and designated (in order) lolF-1, lolC-1, lolD-1, lolO-1, lolA-1, lolU-1, lolP-1, lolT-1, and lolE-1. LOL-2 contained the homologs lolC-2 through lolE-2 in the same order and orientation. Also identified was lolF-2, but its possible linkage with either cluster was undetermined. Most lol genes were regulated in N. uncinatum and N. coenophialum, and all were expressed concomitantly with loline-alkaloid biosynthesis. A lolC-2 RNA-interference (RNAi) construct was introduced into N. uncinatum, and in two independent transformants, RNAi significantly decreased lolC expression (P < 0.01) and loline-alkaloid accumulation in culture (P < 0.001) compared to vector-only controls, indicating involvement of lolC in biosynthesis of lolines. The predicted LolU protein has a DNA-binding site signature, and the relationships of other lol-gene products indicate that the pathway has evolved from various different primary and secondary biosynthesis pathways.  相似文献   

10.
Many Epichlo? endophytes found in cool-season grasses are interspecific hybrids possessing much or all of the genomes of two or three progenitors. Here we characterize Epichlo? canadensis sp. nov., a hybrid species inhabiting the grass species Elymus canadensis native to North America. Three distinct morphotypes were identified that were separated into two groups by molecular phylogenetic analysis. Sequence analysis of the translation elongation factor 1-α (tefA) and β-tubulin (tubB) genes revealed two copies in all isolates examined. Phylogenetic analyses indicated that allele 1 of each gene was derived from Epichlo? amarillans and allele 2 from Epichlo? elymi. This is the first documentation of an interspecific hybrid endophyte derived from parents of strictly North American origins. Alkaloid gene profiling using primers specific to genes in the peramine, loline, indole-diterpene and ergot alkaloid pathways may indicate chemotypic variation in the ergot alkaloid and loline pathways between the assigned morphotypes. All isolates have the gene enabling the production of peramine but lack genes in the indole-diterpene biosynthesis pathway. Morphology and phylogenetic evidence support the designation of isolates from El. canadensis as a new interspecific hybrid species.  相似文献   

11.
A fundamental hallmark of fungal growth is that vegetative hyphae grow exclusively by extension at the hyphal tip. However, this model of apical growth is incompatible with endophyte colonization of grasses by the symbiotic Neotyphodium and Epichlo? species. These fungi are transmitted through host seed, and colonize aerial tissues that develop from infected shoot apical meristems of the seedling and tillers. We present evidence that vegetative hyphae of Neotyphodium and Epichlo? species infect grass leaves via a novel mechanism of growth, intercalary division and extension. Hyphae are attached to enlarging host cells, and cumulative growth along the length of the filament enables the fungus to extend at the same rate as the host. This is the first evidence of intercalary growth in fungi and directly challenges the centuries-old model that fungi grow exclusively at hyphal tips. A new model describing the colonization of grasses by clavicipitaceous endophytes is described.  相似文献   

12.
A fundamental hallmark of fungal growth is that vegetative hyphae grow exclusively by extension at the hyphal tip. However, this model of apical growth is incompatible with endophyte colonization of grasses by the symbiotic Neotyphodium and Epichlo? species. These fungi are transmitted through host seed, and colonize aerial tissues that develop from infected shoot apical meristems of the seedling and tillers. We present evidence that vegetative hyphae of Neotyphodium and Epichlo? species infect grass leaves via a novel mechanism of growth, intercalary division and extension. Hyphae are attached to enlarging host cells, and cumulative growth along the length of the filament enables the fungus to extend at the same rate as the host. This is the first evidence of intercalary growth in fungi and directly challenges the centuries-old model that fungi grow exclusively at hyphal tips. A new model describing the colonization of grasses by clavicipitaceous endophytes is described.  相似文献   

13.
Choke diseases were surveyed in two closely related grass species, Agropyron ciliare var. minus and Agropyron tsukushiense var. transiens, in Shiga Prefecture, Japan. Perithecia and ascospores were not observed in either case. Stromata on A. ciliare var. minus enclosed and sterilized young inflorescences, as in the typical choke symptoms by Epichlo? typhina. On the other hand stromata on A. tsukusiense var. transiens thinly covered mature spikes with white epiphyllous hyphae, as in stromata of Ephelis spp. The fungal isolates produced typical Neotyphodium-type conidia. Molecular phylogenetic analyses using the beta-tubulin gene (tubB) indicated that the two Agropyron species are infected with the species grouping into a novel single clade among Epichlo? species and they are closely related to a haploid of hybrid Neotyphodium species. The host plant features may be the cause of the differences between stromata of A. ciliare var. minus and A. tsukushiense var.  相似文献   

14.
Clavicipitaceous fungal endophytes of the genera Epichlo? and Neotyphodium form symbioses with grasses of the subfamily Pooideae, in which they can synthesize an array of bioprotective alkaloids. Some strains produce the ergopeptine alkaloid ergovaline, which is implicated in livestock toxicoses caused by ingestion of endophyte-infected grasses. Cloning and analysis of a nonribosomal peptide synthetase (NRPS) gene from Neotyphodium lolii revealed a putative gene cluster for ergovaline biosynthesis containing a single-module NRPS gene, lpsB, and other genes orthologous to genes in the ergopeptine gene cluster of Claviceps purpurea and the clavine cluster of Aspergillus fumigatus. Despite conservation of gene sequence, gene order is substantially different between the N. lolii, C. purpurea, and A. fumigatus ergot alkaloid gene clusters. Southern analysis indicated that the N. lolii cluster was linked with previously identified ergovaline biosynthetic genes dmaW and lpsA. The ergovaline genes are closely associated with transposon relics, including retrotransposons and autonomous and nonautonomous DNA transposons. All genes in the cluster were highly expressed in planta, but expression was very low or undetectable in mycelia from axenic culture. This work provides a genetic foundation for elucidating biochemical steps in the ergovaline pathway, the ecological role of individual ergot alkaloid compounds, and the regulation of their synthesis in planta.  相似文献   

15.
Li C  Nan Z  Li F 《Microbiological research》2008,163(4):431-440
Biological and physiological characteristics of Neotyphodium gansuense were compared with Neotyphodium coenophialum and Epichlo? festucae at a range of temperatures and pH values, and on carbon and nitrogen amended media. N. gansuense was able to grow at 10-30 degrees C, but not at 5 degrees C, and slowly at 35 degrees C. The optimal temperature for both N. gansuense and N. coenophialum was 25 degrees C, but that of E. festucae was 20-25 degrees C. The optimal pH ranges for mycelial growth of N. gansuense, N. coenophialum and E. festucae were 5-9, 5-9 and 5-7, respectively. The Neotyphodium and Epichlo? endophytes varied in their ability to grow on media containing different carbon and nitrogen nutrients. The preference of N. gansuense for carbon source was sucrose>glucose, lactose, sorbitol, inulin, maltose, mannitol, starch, fructose>xylose. Growth of all three endophytes tested was significantly improved by peptone, tryptone, casein, yeast extract and l-proline. Yeast extract, peptone, casein, tryptone, l-proline, potassium nitrate, ammonium oxalic acid and l-leucine significantly improved growth of N. gansuense. However, ammonium nitrite was not utilized at all by any tested endophyte. N. gansuense grew significantly better on potato dextrose agar (PDA) and oat meal agar (OMA) than on corn meal agar (CMA) and drunken-horse-grass agar (DA), and most slowly on water agar (WA) and saltwater nutrient agar (SNA).  相似文献   

16.
Fungal endophytes provide grasses with enhanced protection from herbivory, drought, and pathogens. The loline alkaloids (saturated 1-aminopyrrolizidines with an oxygen bridge) are fungal metabolites often present in grasses with fungal endophytes of the genera Epichlo? or Neotyphodium. We conducted a Mendelian genetic analysis to test for activity of lolines produced in plants against aphids feeding on those plants. Though most loline-producing endophytes are asexual, we found that a recently described sexual endophyte, Epichlo? festucae, had heritable variation for loline alkaloid expression (Lol+) or nonexpression (Lol-). By analyzing segregation of these phenotypes and of linked DNA polymorphisms in crosses, we identified a single genetic locus controlling loline alkaloid expression in those E. festucae parents. We then tested segregating Lol+ and Lol- full-sibling fungal progeny for their ability to protect host plants from two aphid species, and observed that alkaloid expression cosegregated with activity against these insects. The in planta loline alkaloid levels correlated with levels of anti-aphid activity. These results suggested a key role of the loline alkaloids in protection of host plants from certain aphids, and represent, to our knowledge, the first Mendelian analysis demonstrating how a fungal factor contributes protection to plant-fungus mutualism.  相似文献   

17.
Yan K  Yanling J  Kunran Z  Hui W  Huimin M  Zhiwei W 《Mycologia》2011,103(6):1341-1350
We describe a new Epichlo? species found in symbiosis with Poa pratensis ssp. pratensis in Liyang, China. Stromata characteristic of Epichlo? spp. were present on some of the reproductive tillers of individual host grasses. Only three of the 98 stromata observed on field plants became orange and produced perithecia. Phylogenetic analyses based on sequences of tubB and tefA indicated that this Epichlo? sp. was an interspecific hybrid related to both E. yangzii and members in the E. typhina complex clade (ETC). Allele-1 of tefA and tubB grouped in the E. bromicola/E. yangzii clade; allele-2 of these two genes clustered in a distinct subclade in the ETC. This is the first report of an Epichlo? species that has interspecific hybrid origins. We propose the name Epichlo? liyangensis Z. Wang, Y. Kang et H. Miao, sp. nov. for this species.  相似文献   

18.
Epichlo? endophytes are a group of filamentous fungi that include both sexual (Epichlo?) and asexual (Neotyphodium) species. As a group they are genetically diverse and form both antagonistic and mutualistic associations with temperate grasses. We report here on the development of a microsatellite-based PCR system for fingerprinting this group of fungi with template isolated from either culture or infected plant material. M13mp19 partial genomic libraries were constructed for size-fractionated genomic DNA from two endophyte strains. These libraries were screened with a mixture of DIG-labeled dinucleotide and trinucleotide repeat probes. Positive clones were sequenced, and nine unique microsatellite loci were identified. An additional microsatellite was serendipitously identified in the 3' untranscribed region of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase gene from N. lolii Lp19. Primers were designed for each locus and a panel of endophytes, from different taxonomic groupings, was screened to determine the degree of polymorphism. On the basis of these results a multiplex assay was developed for strain identification with fluorescently labeled primers for five of these loci. Using this system the size of the products amplified can be precisely determined by automated analysis, and an allele profile for each strain can be readily generated. The assay was shown to resolve endophyte groupings to the level of known isozyme phenotype groupings. In a blind test the assay was used successfully to identify a set of endophytes in planta. A reference database of allele sizes has been established for the panel of endophytes examined, and this will be expanded as new strains are analyzed.  相似文献   

19.
Several species of Lolium and other cool-season grasses (Poaceae subfamily Pooideae) tend to harbor symbiotic, seed-transmitted, fungi that enhance their fitness by various means. These fungal endophytes--species of Neotyphodium or Epichlo? (Clavicipitaceae)--are known for production of antiherbivore metabolites such as the bioprotective loline alkaloids. Lolines are saturated pyrrolizidines with an exo-1-amine and an ether bridge between C-2 and C-7. The ether bridge is an unusual feature for a biogenic compound in that it links two bridgehead carbon atoms. Much of the loline-biosynthetic pathway has been elucidated by administering isotopically labeled precursors to fungal cultures and by comparisons of loline biosynthesis genes to known gene families. The first step appears to be an unusual gamma-substitution reaction involving an enzyme related to O-acetylhomoserine (thiol) lyase, but which uses the secondary amine of L-proline rather than a sulfhydryl group as the nucleophile. The strained ether bridge is added after formation of the pyrrolizidine rings. Lolines with dimethylated or acylated 1-amines have insect antifeedant and insecticidal activities comparable to nicotine, but little or no toxicity to mammals. Considering the surprising abundance of lolines in some grass-endophyte symbiota, possible additional effects on plant stress tolerance and physiology are worth future consideration. In this review, we discuss the history of loline discovery, methods of analysis, biological activities and distribution in nature, as well as progress on the genetics and biochemistry of their biosynthesis, and on the chemical synthesis of these alkaloids.  相似文献   

20.
In a previous study, a total of 484 endophytic fungi were isolated and purified from seven populations of Achnatherum sibiricum (L.) Keng collected at six geographical locations in Inner Mongolia, China. Based on growth rates as well as morphological characteristics, the isolates were classified into five morphotypes. Among them, morphotypes A, B and C were ascribed to the same species, Neotyphodium chisosum, based on ITS sequences. Morphotype E was identified as Epichlo? amarillans. In the present study, four morphotypes, A, B, C and E, belonging to two species, were chosen for an in vitro pathogen trial. The results showed that both endophyte colonies and endophyte filtrate of all morphotypes could inhibit the mycelia growth and spore germination of the pathogen fungi tested. The magnitude of inhibition varied not only between species, but also among morphotypes of the same species. Overall, the antifungal ability of E. amarillans (morphotype E) was higher than that of N. chisosum. Within N. chisosum, the antifungal ability was highest in morphotype C, followed by morphotype A, and lowest in morphotype B. This variability suggests that different morphotypes might represent different genotypes of endophyte. The effect of endophyte infection on the host grass should be examined not only on the species level but also on the morphotype level to determine the possible interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号