首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism by which fish antifreeze proteins cause thermal hysteresis   总被引:6,自引:0,他引:6  
Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at the hysteresis freezing point. We then go on to summarise the empirical data to show that the dependence of the hysteresis on the concentration of antifreeze proteins arises from an equilibrium exchange of antifreeze proteins between ice and solution at the melting point. This reversible association between antifreeze proteins and the ice is followed by an irreversible adsorption of the antifreeze proteins onto a newly formed crystal plane when the temperature is lowered below the melting point. The formation of the crystal plane is due to a solidification of the interfacial region, and the necessary bond strength is provided by the protein "freezing" to the surface. In essence: the antifreeze proteins are "melted off" the ice at the bulk melting point and "freeze" to the ice as the temperature is reduced to subfreezing temperatures. We explain the different hysteresis activities caused by different types of antifreeze proteins at equimolar concentrations as a consequence of their solubility features during the phase of reversible association between the proteins and the ice, i.e., at the melting point; a low water solubility results in a large fraction of the proteins being associated with the ice at the melting point. This leads to a greater density of irreversibly adsorbed antifreeze proteins at the ice surface when the temperature drops, and thus to a greater hysteresis activity. Reference is also made to observations on insect antifreeze proteins to emphasise the general validity of this approach.  相似文献   

2.
甲虫抗冻蛋白是一种具有规则结构的昆虫抗冻蛋白。在相同浓度条件下,甲虫抗冻蛋白比鱼类抗冻蛋白有更高的热滞活性,目前已成为人们重点研究的一类抗冻蛋白。根据甲虫抗冻蛋白的结构特点及其在冰晶表面的吸附模式,应用二维吸附结合模型计算分析了具有6 ̄11个β-螺旋(β-helix)结构片段的甲虫抗冻蛋白变体分子,得到了它们的热滞活性随溶液浓度变化的规律,特别是热滞活性与甲虫抗冻蛋白的β-螺旋结构片段数的关系。结果显示,抗冻蛋白在冰晶表面的覆盖度是一个影响其热滞活性的重要因素。  相似文献   

3.
The authors have isolated and partial purified antifreeze protein antifreeze protein (AFP) produced endogenously in Arnrnopiptanthus rnongolicus. The results show that the partial purified AFP ranged in size including 45.7 kD, 81.2 kD, and so on. At 50 mg/mL protein concentration, the temperature of melting point is –15 ℃, and its freezing point is even lower. Therefore, the AFP activity exhibited by the Arnmopiptanthus mongolicus is higher than that observed for AFP found in polar fishes or in winter rye. In addition, by a phase contrast light photomicroscope, the author have observed the morphology of individual ice crystals formed in the solution, including squares, rectangles, cones, hexagons. The morphology of these ice crystals are similar to those of ice crystals observed in polar fishes and in cold-acclimation winter rye.  相似文献   

4.
Activity of antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) is often determined by thermal hysteresis, which is the difference between the melting temperature and the nonequilibrium freezing temperature of ice in AF(G)P solutions. In this study, we confirmed that thermal hysteresis of AFP type I is significantly enhanced by a cooperative function of ammonium polyacrylate (NH4PA). Thermal hysteresis of mixtures of AFP type I and NH4PA was much larger than the sum of each thermal hysteresis of AFP type I and NH4PA alone. In mixed solutions of AFP type I and NH4PA in the thermal hysteresis region, hexagonal pyramidal-shaped pits densely formed on ice surfaces close to the basal planes. The experimental results suggest that the cooperative function of NH4PA with AFP type I was caused either by the increase in adsorption sites of AFP type I on ice or by the adsorption of AFP type I aggregates on ice.  相似文献   

5.
It is known that life processes below the melting point temperature can actively evolve and establish in micrometer-sized (and larger) veins and structures in ice and permafrost soil, filled with unfrozen water. Thermodynamic arguments and experimental results indicate the existence of much smaller nanometer-sized thin films of undercooled liquid interfacial (ULI) water on surfaces of micrometer sized and larger mineral particles and microbes in icy environments far below the melting point temperature. This liquid interfacial water can be described in terms of a freezing point depression, which is due to the interfacial pressure of van der Waals forces. The physics behind the possibly also life supporting capability of nanometric films of undercooled liquid interfacial water, which also can “mantle” the surfaces of the much larger and micrometer-sized microbes, is discussed. As described, biological processes do not necessarily have to proceed in the “bulk” of the thin interfacial water, as in “vinical” water and in the micrometer-sized veins e.g., but they can be supported or are even made possible already by covering thin mantles of liquid interfacial water. These can provide liquid water for metabolic processes and act as carrier for the necessary transport of nutrients and waste. ULI water supports two different and possibly biologically relevant transport processes: 2D molecular diffusion in the interfacial film, and flow-like due to regelation. ULI-water, which is “lost” by transport into microbes, e.g., will be refilled from the neighbouring ice. In this way, the nanometric liquid environment of microbes in ULI-water is comparable to that of microbes in bulk water. Another probably also biologically relevant property of ULI is, depending on the hydrophobic or hydrophilic character of the surfaces, that it is of lower density (LDL) or higher density (HDL) than bulk water.Furthermore, capillary effects and ions in ULI-water solutions can support, enhance, and stabilize the formation of layers of interfacial water. A more detailed future investigation of the possible support of life processes by nanometric ULI water in ice is a challenge to current cryomicrobiology. Related results of Rivkina et al. [22] indeed indicate that life processes can remain active at water contents corresponding to about or less than two monolayers of ULI water.  相似文献   

6.
根据冰晶在水溶液中生长的基本热力学性质,应用多层界面模型,分别得到了冰晶在纯水及抗冻蛋白溶液中生长界面层的吉布斯自由能.由冰晶生长界面层的吉布斯自由能,分析了冰晶在三种不同第一类鱼抗冻蛋白分子溶液中,热平衡状态下生长界面层的微观平衡结构,发现冰晶在抗冻蛋白溶液中生长与其在纯水中生长相比,界面层结构有明显变化,结合抗冻蛋...  相似文献   

7.
The Atlantic and spotted wolffish (Anarhichas lupus and A. minor, respectively) inhabit the cold waters of the northeast Atlantic Ocean. Although both species experience subzero water temperatures during winter, the Atlantic wolffish, which occupies shallower waters than the spotted wolffish, faces the greater threat of coming into contact with ice and freezing. This laboratory study was designed to determine whether these species differed in their abilities to resist freezing by examining the seasonal changes in blood plasma freezing points, antifreeze protein (AFP) activity and Na+ and Cl concentrations when exposed to seasonally cycling water temperatures and photoperiod. The plasma of both species showed distinct seasonal cycles in all parameters with the highest values occurring during the winter. However, of the two species, only the Atlantic wolffish produced sufficient AFP to protect the fish down to the freezing point of seawater (− 1.80 °C). The levels of AFP in the spotted wolffish were too low to impart any significant improvement in their resistance to freezing (approximately − 0.8 °C).When wolffish were maintained in warm water under a seasonally changing photoperiod, the amplitude of the seasonal cycle in AFP activity was greatly reduced, indicating that low water temperatures are necessary to maximize plasma AFP levels. However, despite being maintained in warm water, plasma levels of AFP activity began to increase over summer values at the same time of year as did the fish exposed to seasonally changing water temperatures. This suggests that photoperiod plays a major role in the timing of the annual AFP cycle.  相似文献   

8.
《Cryobiology》2006,52(3):262-280
Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at the hysteresis freezing point. We then go on to summarise the empirical data to show that the dependence of the hysteresis on the concentration of antifreeze proteins arises from an equilibrium exchange of antifreeze proteins between ice and solution at the melting point. This reversible association between antifreeze proteins and the ice is followed by an irreversible adsorption of the antifreeze proteins onto a newly formed crystal plane when the temperature is lowered below the melting point. The formation of the crystal plane is due to a solidification of the interfacial region, and the necessary bond strength is provided by the protein “freezing” to the surface. In essence: the antifreeze proteins are “melted off” the ice at the bulk melting point and “freeze” to the ice as the temperature is reduced to subfreezing temperatures. We explain the different hysteresis activities caused by different types of antifreeze proteins at equimolar concentrations as a consequence of their solubility features during the phase of reversible association between the proteins and the ice, i.e., at the melting point; a low water solubility results in a large fraction of the proteins being associated with the ice at the melting point. This leads to a greater density of irreversibly adsorbed antifreeze proteins at the ice surface when the temperature drops, and thus to a greater hysteresis activity. Reference is also made to observations on insect antifreeze proteins to emphasise the general validity of this approach.  相似文献   

9.
This work investigates how functionalization of aluminium surfaces with natural type III Anti-Freeze Protein (AFP) affects the mechanism of heterogeneous ice nucleation. First the bulk ice nucleation properties of distilled water and aqueous solution of AFP were evaluated by differential scanning calorimetry. Then the modified surface was characterized by Secondary Ions Mass Spectroscopy (SIMS), Fourier Transform InfraRed (FTIR) spectroscopy and contact angle measurement. Freezing experiments were then conducted in which water droplets underwent a slow controlled cooling. This study shows that compared to uncoated aluminium, the anti-freeze proteins functionalized surfaces exhibit a higher and narrower range of freezing temperature. It was found that these proteins that keep living organisms from freezing in cold environment act in the opposite way once immobilized on surfaces by promoting ice nucleation. Some suggestions regarding the mechanism of action of the observed phenomena were proposed based on the Classical Nucleation Theory (CNT).  相似文献   

10.
Antifreeze proteins (AFPs), characterized by their ability to separate the melting and growth temperatures of ice and to inhibit ice recrystallization, play an important role in cold adaptation of several polar and cold-tolerant organisms. Recently, a multigene family of AFP genes was found in the diatom Fragilariopsis cylindrus, a dominant species within polar sea ice assemblages. This study presents the AFP from F. cylindrus set in a molecular and crystallographic frame. Differential protein expression after exposure of the diatoms to environmentally relevant conditions underlined the importance of certain AFP isoforms in response to cold. Analyses of the recombinant AFP showed freezing point depression comparable to the activity of other moderate AFPs and further enhanced by salt (up to 0.9 °C in low salinity buffer, 2.5 °C at high salinity). However, unlike other moderate AFPs, its fastest growth direction is perpendicular to the c-axis. The protein also caused strong inhibition of recrystallization at concentrations of 1.2 and 0.12 μM at low and high salinity, respectively. Observations of crystal habit modifications and pitting activity suggested binding of AFPs to multiple faces of the ice crystals. Further analyses showed striations caused by AFPs, interpreted as inclusion in the ice. We suggest that the influence on ice microstructure is the main characteristic of these AFPs in sea ice.  相似文献   

11.
Antifreeze proteins (AFPs) protect many plants and organisms from freezing in low temperatures. Of the different AFPs, the most studied AFP Type I from winter flounder is used in the current computational studies to gain molecular insight into its adsorption at the ice/water interface. Employing molecular dynamics simulations, we calculate the free energy difference between the hydrophilic and hydrophobic faces of the protein interacting with ice. Furthermore, we identify three properties of Type I "antifreeze" proteins that discriminate among these two orientations of the protein at the ice/water interface. The three properties are: the "surface area" of the protein; a measure of the interaction of the protein with neighboring water molecules as determined by the number of hydrogen bond count, for example; and the side-chain orientation angles of the threonine residues. All three discriminants are consistent with our free energy results, which clearly show that the hydrophilic protein face orientations toward the ice/water interface, as hypothesized from experimental and ice/vacuum simulations, are incorrect and support the hypothesis that the hydrophobic face is oriented toward the ice/water interface. The adsorption free energy is calculated to be 2-3 kJ/mol.  相似文献   

12.
The basis for hyperactivity of antifreeze proteins   总被引:4,自引:0,他引:4  
Antifreeze proteins (AFPs) bind to the surface of ice crystals and lower the non-equilibrium freezing temperature of the icy solution below its melting point. We have recently reported the discovery of three novel hyperactive AFPs from a bacterium, a primitive insect and a fish, which, like two hyperactive AFPs previously recognized in beetles and moths, are considerably better at depressing the freezing point than most fish AFPs. When cooled below the non-equilibrium freezing temperature, ice crystals formed in the presence of any of five distinct, moderately active fish AFPs grow suddenly along the c-axis. Ice crystals formed in the presence of any of the five evolutionarily and structurally distinct hyperactive AFPs remain stable to lower temperatures, and then grow explosively in a direction normal to the c-axis when cooled below the freezing temperature. We argue that this one consistent distinction in the behaviour of these two classes of AFPs is the key to hyperactivity. Whereas both AFP classes bind irreversibly to ice, the hyperactive AFPs are better at preventing ice growth out of the basal planes.  相似文献   

13.
Role of water in some biological processes.   总被引:14,自引:3,他引:11  
The state of intracellular water has been a matter of controversy for a long time for two reasons. First, experiments have often given conflicting results. Second, hitherto, there have been no plausible grounds for assuming that intracellular water should be significantly different from bulk water. A collective behavior of water molecules is suggested here as a thermodynamically inevitable mechanism for generation of appreciable zones of abnormal water. At a highly charged surface, water molecules move together, generating a zone of water perhaps 6 nm thick, which is weakly hydrogen bonded, fluid, and reactive and selectively accumulates small cations, multivalent anions, and hydrophobic solutes. At a hydrophobic surface, molecules move apart and local water becomes strongly bonded, inert, and viscous and accumulates large cations, univalent anions, and compatible solutes. Proteins and many other biopolymers have patchy surfaces which therefore induce, by the two mechanisms described, patchy interfacial water structures, which extended appreciable distances from the surface. The reason for many conflicting experimental results now becomes apparent. Average values of properties of water measured in gels, cells, or solutions of proteins are often not very different from the same properties of normal water, giving no indication that they are averages of extreme values. To detect the operation of this phenomenon, it is necessary to probe selectively a single abnormal population. Examples of such experiments are given. It is shown that this collective behavior of water molecules amounts to a considerable biological force, which can be equivalent to a pressure of 1,000 atm (1.013 x 10(5) kPa). It is suggested that cells selectively accumulate K+ ions and compatible solutes to avoid extremes of water structure in their aqueous compartments, but that cation pumps and other enzymes exploit the different solvent properties and reactivities of water to perform work of transport or synthesis.  相似文献   

14.
On the mechanism of injury to slowly frozen erythrocytes.   总被引:4,自引:1,他引:3       下载免费PDF全文
When cells are frozen slowly in aqueous suspensions, the solutes in the suspending solution concentrate as the amount of ice increases; the cells undergo osmotic dehydration and are sequestered in ever-narrowing liquid-filled channels. Cryoprotective solutes, such as glycerol, reduce the amount of ice that forms at any specified subzero temperature, thereby controlling the buildup in concentration of those other solutes present, as well as increasing the volume of the channels that remain to accommodate the cells. It has generally been thought that freezing injury is mediated by the increase in electrolyte concentration in the milieu surrounding the cells, rather than reduction of temperature or any direct action of ice. In this study we have frozen human erythrocytes in isotonic solutions of sodium chloride and glycerol and have demonstrated a correlation between the extent of damage at specific subzero temperatures, and that caused by the action at 0 degrees C of solutions having the same composition as those produced by freezing. The cell lysis observed increased directly with glycerol concentration, both in the freezing experiments and when the cells were exposed to corresponding solutions at 0 degrees C, showing that the concentration of sodium chloride alone is not sufficient to account quantitatively for the damage observed. We then studied the effect of freezing in anisotonic solutions to break the fixed relationship between solute concentration and the volume of the unfrozen fraction, as described by Mazur, P., W. F. Rall, and N. Rigopoulos (1981. Biophys. J. 653-675). We confirmed their experimental findings, but we explain them differently. We ascribe the apparently dominant effect of the unfrozen fraction to the fact that the cells were frozen in, and returned to, anisotonic solutions in which their volume was either less than, or greater than, their physiological volume. When similar cell suspensions were subjected to a similar cycle of increase and then decrease in solution strength, but in the absence of ice (at 20 degrees C), a similar pattern of hemolysis was observed. We conclude that freezing injury to human erythrocytes is due solely to changes that occur in the composition of their surrounding milieu, and is most probably mediated by a temporary leak in the plasma membrane that occurs during the thawing (reexpansion) phase.  相似文献   

15.
Certain plant-associating bacteria produce ice nucleation proteins (INPs) which allow the crystallization of water at high subzero temperatures. Many of these microbes are considered plant pathogens since the formed ice can damage tissues, allowing access to nutrients. Intriguingly, certain plants that host these bacteria synthesize antifreeze proteins (AFPs). Once freezing has occurred, plant AFPs likely function to inhibit the growth of large damaging ice crystals. However, we postulated that such AFPs might also serve as defensive mechanisms against bacterial-mediated ice nucleation. Recombinant AFP derived from the perennial ryegrass Lolium perenne (LpAFP) was combined with INP preparations originating from the grass epiphyte, Pseudomonas syringae. The presence of INPs had no effect on AFP activity, including thermal hysteresis and ice recrystallization inhibition. Strikingly, the ice nucleation point of the INP was depressed up to 1.9 °C in the presence of LpAFP, but a recombinant fish AFP did not lower the INP-imposed freezing point. Assays with mutant LpAFPs and the visualization of bacterially-displayed fluorescent plant AFP suggest that INP and LpAFP can interact. Thus, we postulate that in addition to controlling ice growth, plant AFPs may also function as a defensive strategy against the damaging effects of ice-nucleating bacteria.  相似文献   

16.
Ice recrystallization, the growth of large ice crystals at the expense of small ones, stresses freeze tolerant organisms and causes spoilage of frozen foods. This process is inhibited by antifreeze proteins (AFPs). Here, we present a simple method for determining the ice recrystallization inhibition (RI) activity of an AFP under physiological conditions using 10microl glass capillaries. Serial dilutions were prepared to determine the concentration below which RI activity was no longer detected, termed the RI endpoint. For type III AFP this was 200nM. The capillary method allows samples to be aligned and viewed simultaneously, which facilitates RI endpoint determination. Once prepared, the samples can be used reproducibly in subsequent RI assays and can be archived in a freezer for future reference. This method was used to detect the elution of type III AFP from a Sephadex G-75 size-exclusion column. RI activity was found at the expected V(e) for a 7kDa protein and also unexpectedly in the void volume.  相似文献   

17.
The development of cartilage-specific imaging agents supports the improvement of tissue assessment by minimally invasive means. Techniques for highlighting cartilage surface damage in clinical images could provide for sensitive indications of posttraumatic injury and early stage osteoarthritis. Previous studies in our laboratory have demonstrated that fluorescent solutes interact with cartilage surfaces strongly enough to affect measurement of their partition coefficients within the tissue bulk. In this study, these findings were extended by examining solute adsorption and distribution near the articular surface of mechanically injured cartilage. Using viable cartilage explants injured by an established protocol, solute distributions near the articular surface of three commonly used fluorophores (fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC), and carboxytetramethylrhodamine (TAMRA)) were observed after absorption and subsequent desorption to assess solute-specific matrix interactions and reversibility. Both absorption and desorption processes demonstrated a trend of significantly less solute adsorption at surfaces of fissures compared to adjacent intact surfaces of damaged explants or surfaces of uninjured explants. After adsorption, normalized mean surface intensities of fissured surfaces of injured explants were 6%, 40%, and 32% for FITC, TRITC, and TAMRA, respectively, compared to uninjured surfaces. Similar values were found for sliced explants and after a desorption process. After desorption, a trend of increased solute adsorption at the site of intact damaged surfaces was noted (316% and 238% for injured and sliced explants exposed to FITC). Surface adsorption of solute was strongest for FITC and weakest for TAMRA; no solutes negatively affected cell viability. Results support the development of imaging agents that highlight distinct differences between fissured and intact cartilage surfaces.  相似文献   

18.
The development of cartilage-specific imaging agents supports the improvement of tissue assessment by minimally invasive means. Techniques for highlighting cartilage surface damage in clinical images could provide for sensitive indications of posttraumatic injury and early stage osteoarthritis. Previous studies in our laboratory have demonstrated that fluorescent solutes interact with cartilage surfaces strongly enough to affect measurement of their partition coefficients within the tissue bulk. In this study, these findings were extended by examining solute adsorption and distribution near the articular surface of mechanically injured cartilage. Using viable cartilage explants injured by an established protocol, solute distributions near the articular surface of three commonly used fluorophores (fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC), and carboxytetramethylrhodamine (TAMRA)) were observed after absorption and subsequent desorption to assess solute-specific matrix interactions and reversibility. Both absorption and desorption processes demonstrated a trend of significantly less solute adsorption at surfaces of fissures compared to adjacent intact surfaces of damaged explants or surfaces of uninjured explants. After adsorption, normalized mean surface intensities of fissured surfaces of injured explants were 6%, 40%, and 32% for FITC, TRITC, and TAMRA, respectively, compared to uninjured surfaces. Similar values were found for sliced explants and after a desorption process. After desorption, a trend of increased solute adsorption at the site of intact damaged surfaces was noted (316% and 238% for injured and sliced explants exposed to FITC). Surface adsorption of solute was strongest for FITC and weakest for TAMRA; no solutes negatively affected cell viability. Results support the development of imaging agents that highlight distinct differences between fissured and intact cartilage surfaces.  相似文献   

19.
Eggers DK 《Biochemistry》2011,50(12):2004-2012
A new phenomenological model for interpreting the effects of solutes on biological equilibria is presented. The model attributes changes in equilibria to differences in the desolvation energy of the reacting species that, in turn, reflect changes in the free energy of the bulk water upon addition of secondary solutes. The desolvation approach differs notably from that of other solute models by treating the free energy of bulk water as a variable and by not ascribing the observed shifts in reaction equilibria to accumulation or depletion of solutes next to the surfaces of the reacting species. On the contrary, the partitioning of solutes is viewed as a manifestation of the different subpopulations of water that arise in response to the surface boundary conditions. A thermodynamic framework consistent with the proposed model is used to derive a relationship for a specific reaction, an aqueous solubility equilibrium, in two or more solutions. The resulting equation reconciles some potential issues with the transfer free energy model of Tanford. Application of the desolvation energy model to the analysis of a two-state protein folding equilibrium is discussed and contrasted to the application of two other solute models developed by Timasheff and by Parsegian. Future tabulation of solvation energies and bulk water energies may allow biophysical chemists to confirm the mechanism by which secondary solutes influence binding and conformational equilibria and may provide a common ground on which experimentalists and theoreticians can compare and evaluate their results.  相似文献   

20.
Antifreeze proteins, AFP, impede freezing of bodily fluids and damaging of cellular tissues by low temperatures. Adsorption-inhibition mechanisms have been developed to explain their functioning. Using in silico Molecular Dynamics, we show that type I AFP can also induce melting of the local ice surface. Simulations of antifreeze-positive and antifreeze-negative mutants show a clear correlation between melting induction and antifreeze activity. The presence of local melting adds a function to type I AFPs that is unique to these proteins. It may also explain some apparently conflicting experimental results where binding to ice appears both quasipermanent and reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号