首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of 3-hydroxyproline was studied with crude rat kidney cortex extract as a source of enzyme and chick embryo tendon protocollagen and procollagen or cartilage protocollagen as a substrate. Synthesis of 3-hydroxyproline was observed with all these substrates and the formation of 3-hydroxyproline ranged up to seven residues per pro-alpha-chain. The highest rate of 3-hydroxylation took place at 20 degrees C and the reaction required Fe2+, O2,2-oxoglutarate and ascorbate. The formation of 3-hydroxyproline was affected by chain length and the conformation of the substrate, in that longer polypeptide chains proved better substrates, while the native triple-helical conformation of protocollagen or procollagen completely prevented the reaction. Formation of 3-hydroxyproline with tendon procollagen as a substrate was not inhibited by antiserum to prolyl 4-hydroxylase or by poly(L-proline) when these substances were used in concentrations which clearly inhibited 4-hydroxyproline formation with tendon protocollagen as a substrate. Furthermore, pure prolyl 4-hydroxylase did not synthesize any 3-hydroxyproline under conditions in which the crude rat kidney cortex enzyme would readily do so. The data thus strongly suggest that prolyl 3-hydroxylase and prolyl 4-hydroxylase are separate enzymes.  相似文献   

2.
Prolyl 3-hydroxylase activity and the extent of collagen proline 3-hydroxylation were studied in six transformed and three control human cell lines. In the transformed cell lines, the enzyme activity was markedly high in two, similar to that in control cells in two and significantly low in two. The extent of proline 3-hydroxylation was markedly high in cell lines with high enzyme activity, but it was also significantly high in some transformed cell lines with enzyme activities similar to those in the controls. The results thus suggest that, in addition to the amount of enzyme activity present, the rate of collagen synthesis also affects the extent of proline 3-hydroxylation in the newly synthesized collagen. The effect of acute cell transformation on prolyl 3-hydroxylase and 4-hydroxylase activities was studied by infecting chick-embryo fibroblasts with Rous sarcoma virus mutant NY68, temperature-sensitive for transformation. At the permissive temperature prolyl 3-hydroxylase activity showed a more rapid increase and decrease than did prolyl 4-hydroxylase activity, the maximal activity for both enzymes being about 2.5 times that in the control chick fibroblasts. When the transformed cells were shifted to the non-permissive temperature the decays in the elevated enzyme activities were similar, suggesting identical half-lives.  相似文献   

3.
After severe hepatic injury induced by dimethylnitrosamine, approximately a 4-fold increase in hepatic prolyl 4-hydroxylase activity occurred within 4 days, whereas the increases in total immunoreactive prolyl 4-hydroxylase protein and in prolyl 3-hydroxylase activity were only about 1.4-fold. The different magnitudes of the increases in the prolyl 4-hydroxylase and 3-hydroxylase activities were verified after partial purification of the enzymes by gel filtration. The data support previous reports indicating differential increases in the activities of individual enzymes of collagen biosynthesis in hepatic injury. Separation of prolyl 4-hydroxylase tetramers from the monomer-size protein by gel filtration indicated that the increase in enzyme activity was similar to that in enzyme tetramers, and an increase had also occurred in the ratio of enzyme tetramers to total enzyme protein. Thus the specific activity of the tetramers had remained unchanged in liver injury. The administration of dimethylnitrosamine was also accompanied by a marked increase in the immunoreactive prolyl 4-hydroxylase protein concentration in the serum, and a similar effect was also noted after carbon tetrachloride administration, results suggesting that the increases originated in the liver.  相似文献   

4.
Differences between prolyl 3-hydroxylase and prolyl 4-hydroxylase activities were found in their stimulation and inactivation by dithiothreitol and in their affinity to poly-L-proline linked to agarose. The two enzyme activities were separated by gel filtration, the results demonstrating that they are due to separate proteins. Comparison of [14C]proline-labelled protocollagen and the same protein when fully 4-hydroxylated as substrates indicated dependence of 3-hydroxyproline formation on the presence of 4-hydroxyproline. It is suggested that the main substrate sequence for 3-hydroxyproline synthesis is -Gly-Pro-4Hyp-Gly-.  相似文献   

5.
J Koivu  R Myllyl? 《Biochemistry》1986,25(20):5982-5986
Protein disulfide-isomerase was isolated as a homogeneous protein from 15-day-old chick embryos. The enzyme has a molecular weight of 56,000 in SDS-polyacrylamide gel electrophoresis. Its Km value for randomly cross-linked ribonuclease, a protein used as a substrate for the enzyme, was 0.3 microM, and the Km value for DTT was 1.0 microM. Its optimum pH was 7.5 and its optimum temperature, 33 degrees C. The maximal velocity of pure protein disulfide-isomerase from chick embryos under optimal conditions was about 29,000 units/g. Protein disulfide-isomerase was able to activate purified prolyl 4-hydroxylase 2- to 3-fold, the activation being higher for enzyme stored for a longer time. This activation is probably due to the repairing of disulfide exchanges occurring in the prolyl 4-hydroxylase structure during purification and storage. Prolyl 4-hydroxylase activity was very stable in microsomes, however, and protein disulfide-isomerase was unable to increase the microsomal prolyl 4-hydroxylase activity, suggesting that prolyl 4-hydroxylase retains its native conformation in microsomes. Protein disulfide-isomerase was able to reactivate prolyl 4-hydroxylase inactivated by mild H2O2 treatment. The activity obtained after this treatment and protein disulfide-isomerase incubation corresponded to the amount of prolyl 4-hydroxylase tetramer found after H2O2 treatment. The data suggest that protein disulfide-isomerase is able to activate only the tetramer part of the enzyme preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. The specific activity of the aniline 4-hydroxylase which catalyses hydroxylation of aniline to p-aminophenol was found to be 0.65 (N = 10) and 0.15 (N = 13) nmol p-aminophenol formed/mg protein/min, in sheep liver and lung microsomes, respectively. 2. The effects of aniline concentration, pH, cofactors, amount of enzyme and incubation period, on enzyme activity were studied, and the optimum conditions for maximum activity of liver and lung microsomes were determined. 3. Liver and lung microsomal aniline 4-hydroxylase activity was found to be completely dependent on the presence of cofactor NADPH. 4. The Lineweaver Burk and Eadie Hofstee plots of the liver enzyme were found to be curvilinear, suggesting that the enzyme did not follow the Michaelis Menten kinetics. From these graphs, two different Km values were calculated for the liver enzyme as 3.21 and 0.072 mM aniline. Km of the lung enzyme was calculated to be 1.43 mM aniline from its Lineweaver Burk graph. 5. The effects of magnesium, nickel and cadmium ions on the liver and lung aniline 4-hydroxylase activity were examined. Magnesium ion was found to have stimulatory effect, whereas nickel and cadmium ions inhibited the activity of the both liver and lung enzyme.  相似文献   

7.
An assay is reported for prolyl 3-hydroxylase activity. The method is based on the release of tritiated water (THO) during 3-hydroxylation of a 2,3-T-l-proline-labeled (T = tritium) polypeptide substrate in which all prolyl residues recognized by prolyl 4-hydroxylase have been converted to 4-hydroxyprolyl residues. The formation of THO was essentially linear with enzyme concentration and time, and the Km for the polypeptide substrate was about 3.4 × 10?8m. A linear correlation was found between THO release and the synthesis of 3-hydroxyproline, the latter being analyzed by amino acid analyzer. The assay is simple, rapid, sensitive, and reproducible, and it is specific even in tissue samples containing a large excess of prolyl 4-hydroxylase activity.  相似文献   

8.
The collagen prolyl hydroxylases are enzymes that are required for proper collagen biosynthesis, folding, and assembly. They reside within the endoplasmic reticulum and belong to the group of 2-oxoglutarate and iron-dependent dioxygenases. Although prolyl 4-hydroxylase has been characterized as an alpha2beta2 tetramer in which protein disulfide isomerase is the beta subunit with two different alpha subunit isoforms, little is known about the enzyme prolyl 3-hydroxylase (P3H). It was initially characterized and shown to have an enzymatic activity distinct from that of prolyl 4-hydroxylase, but no amino acid sequences or genes were ever reported for the mammalian enzyme. Here we report the characterization of a novel prolyl 3-hydroxylase enzyme isolated from embryonic chicks. The primary structure of the enzyme, which we now call P3H1, demonstrates that P3H1 is a member of a family of prolyl 3-hydroxylases, which share the conserved residues present in the active site of prolyl 4-hydroxylase and lysyl hydroxylase. P3H1 is the chick homologue of mammalian leprecan or growth suppressor 1. Two other P3H family members are the genes previously called MLAT4 and GRCB. In this study we demonstrate prolyl 3-hydroxylase activity of the purified enzyme P3H1 on a full-length procollagen substrate. We also show it to specifically interact with denatured collagen and to exist in a tight complex with other endoplasmic reticulum-resident proteins. Immunohistochemistry with a monoclonal antibody specific for chick P3H1 localizes P3H1 specifically to tissues that express fibrillar collagens, suggesting that other P3H family members may be responsible for modifying basement membrane collagens.  相似文献   

9.
Concomitant hydroxylation of proline and lysine residues in protocollagen was studied using purified enzymes. The data suggest that prolyl 4-hydroxylase (prolyl-glycyl-peptide, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating), EC 1.14.11.2) and lysyl hydroxylase (peptidyllysine, 2-oxoglutarate; oxygen 5-oxidoreductase, EC 1.14.11.4) are competing for the protocollagen substrate, this competition resulting in an inhibition of the lysyl hydroxylase but not of the prolyl 4-hydroxylase reaction. When the same protocollagen was used for these hydroxylases, the affinity of prolyl 4-hydroxylase to the protocollagen substrate was about 2-fold higher than that of lysyl hydroxylase. Hydroxylation of lysine residues in protocollagen had no effect on the affinity of prolyl 4-hydroxylase, whereas hydroxylation of proline residues decreased the affinity of lysyl hydroxylase to one-half of the value determined before the hydroxylation. When enzyme preparations containing different ratios of lysyl hydroxylase activity to prolyl 4-hydroxylase activity were used to hydroxylase protocollagen substrate, it was found that in the case of a low ratio the hydroxylation of lysine residues seemed to proceed only after a short lag period. Accordingly, it seems probable that most proline residues are hydroxylated to 4-hydroxyproline residues before hydroxylation of lysine residues if the prolyl 4-hydroxylase and lysyl hydroxylase are present as free enzymes competing for the same protocollagen substrate.  相似文献   

10.
Monoclonal antibodies to human prolyl 4-hydroxylase   总被引:5,自引:0,他引:5  
Monoclonal antibodies against human prolyl 4-hydroxylase (EC 1.14.11.2), an intracellular enzyme of collagen biosynthesis, were produced by fusing spleen cells from BALB/c mice hyperimmunized with human prolyl 4-hydroxylase and mouse myeloma cells (P3/NS 1/1-AG 4-1). Hybridomas from 14 different primary microtiter-plate well cultures produced antibodies to human prolyl 4-hydroxylase; six of them with the highest antibody titer were cloned and antibodies produced by one clone from each of the six lines were further characterized. All of the six cloned hybrids produced antibodies of the IgG class as detected by immunodiffusion. The enzyme antigen used in the present study was a tetramer composed of two pairs of different subunit proteins, alpha and beta. Only one clone which produced antibodies to the alpha subunit was obtained, the other five antibodies being directed against the beta subunit. All the antibodies reacted with the tetramer form of the enzyme. Species cross-reactivity of the antibodies was tested using cultured human, mouse and chick fibroblasts and purified prolyl 4-hydroxylase from chick and mouse sources. None of the antibodies cross-reacted with chick or mouse fibroblasts, as determined by immunofluorescence, whereas one antibody reacted with purified chick and mouse prolyl 4-hydroxylase when examined by the western blotting technique. This antibody caused a strong inhibition of human prolyl 4-hydroxylase activity, but the other five antibodies had negligible inhibitory effect on the activity of the enzyme.  相似文献   

11.
Prolyl 3-hydroxylase was purified up to about 5000-fold from an (NH4)2SO4 fraction of chick-embryo extract by a procedure consisting of affinity chromatography on denatured collagen linked to agarose, elution with ethylene glycol and gel filtration. The molecular weight of the purified enzyme is about 160000 by gel filtration The enzyme is probably a glycoprotein, since (a) its activity is inhibited by concanavalin A, and (b) the enzyme is bound to columns of this lectin coupled to agarose and can be eluted with a buffer containing methyl alpha-D-mannoside. The Km values for Fe2+, 2-oxoglutarate, O2 and ascorbate in the prolyl 3-hydroxylase reaction were found to be very similar to those previously reported for these co-substrates in the prolyl 4-hydroxylase and lysyl hydroxylase reactions.  相似文献   

12.
Peptides containing the unphysiological amino acid 5-oxaproline (Opr) in the sequence R1-Xaa-Opr-Gly-OR2 were found to inactivate prolyl 4-hydroxylase from chick and human origins. Of the substances investigated, compounds with aromatic substituents R1 and R2 were particularly effective when compared with those with an aliphatic group or without a C-terminal blocking group. Both affinity of the individual peptides for the enzyme and partition ratio contributed to the differences in efficiency. Benzylcarbonyl-Phe-Opr-Gly-benzyl ester was the most effective substance tested, its concentration giving 50% inactivation in 1 h being 0.8 microM. Inactivation was only observed in the presence of 2-oxoglutarate and Fe2+. The Opr peptides enhanced the decarboxylation of 2-oxoglutarate by prolyl 4-hydroxylase, the Vmax values obtained with the individual peptides being positively correlated with their inactivating efficiency. Inactivation was prevented by high concentrations of peptide substrate and ascorbate. Lineweaver-Burk kinetics experiments suggested noncompetitive inhibition with respect to peptide substrate and ascorbate. Lysyl hydroxylase was not affected by Opr peptides in concentrations of up to 1.5 mM in either the presence or absence of prolyl 4-hydroxylase. The results suggest that the oxaproline compounds are specific syncatalytic inactivators of prolyl 4-hydroxylase.  相似文献   

13.
Incubation parameters for a radioderivative assay for estrogen 2-hydroxylase have been examined. The assay was found to be specific and sensitive if a chromatographically purified preparation of COMT was used. Estradiol was found to be a better substrate for the 2-hydroxylase than estrone or estriol. The liver had significantly higher estrogen 2-hydroxylase activity than any other tissue examined. The estrogen 2-hydroxylase was highly localized in the microsomal fraction in both the liver and the brain. The male rat was found to have significantly more estrogen 2-hydroxylase activity in the liver than the female rat. In addition, in the male rat liver, the estrogen 2-hydroxylase activity was reversibly inducible by testosterone and was not affected by phenobarbital. In the male and female rat brain the estrogen 2-hydroxylase activities were similar.  相似文献   

14.
Prolyl endopeptidase and pyroglutamyl peptidase I are enzymes which participate in the degradation of thyrotropin-releasing hormone (TRH), a hormone which is thought to play an important role in the development of organs and tissues. Here, we have characterized the ontogeny of TRH degrading enzyme activity in the brain cortex, lung, heart, kidney and liver. Overall, prolyl endopeptidase activity was found to be 2 to 5 fold higher in newborn vs. adult rat tissues, with the exception of the soluble form in the liver and the particulate form in the lung. In contrast, the developmental profile of pyroglutamyl peptidase I activity was found to be more variable and tissue dependent. These results corroborate the idea that both enzymes play important, tissue-specific roles during the development and maturation of rat organs.  相似文献   

15.
Two pituitaries from 7-week-old female rats (Sprague-Dawley strain) were grafted under the capsule of the left kidney of a 49-day old male rat. The pituitary grafted and sham-operated rats were hypophysectomized at 56 days of age. The hypophysectomized rats were given daily injections of NIAMDD-oFSH-13 (20 micrograms/0.5 ml saline), NIAMDD-oLH-23 (9 micrograms/0.5 ml saline) or saline for 4 days starting from day 58. The treated rats and normal male rats were killed at 61 days of age. Testicular homogenates were incubated with [14C]4-androstene-3, 17-dione or [3H] progesterone, and enzyme activities per testes were estimated. Hypophysectomy caused significant decreases in activities of testicular 17 beta-oxidoreductase and 17-hydroxylase. The decreased activity of 17 beta-oxidoreductase was significantly stimulated by FSH or LH treatment, whereas the decreased 17-hydroxylase activity was stimulated only by LH treatment. Although pituitary grafts alone showed little or no effect on these enzyme activities in the hypophysectomized rats, the grafts significantly inhibited FSH-stimulated 17 beta-oxidoreductase activity and the LH-stimulated 17 beta-oxidoreductase and 17-hydroxylase activities but enhanced LH-induced 5 alpha-reductase activity. The present results confirm previous findings that an excess of prolactin directly inhibits LH-stimulated 17-hydroxylase activity but enhances LH-induced 5 alpha-reductase activity in the rat testis. The present results also demonstrate that the same grafts directly inhibit FSH-stimulated 17 beta-oxidoreductase activity but have no effect on FSH-induced 5 alpha-reductase activity.  相似文献   

16.
The anthracyclines doxorubicin and daunorubicin were found to act as irreversible inhibitors of prolyl 4-hydroxylase. The reaction rate for enzyme from both chick and human origin was first order, the concentration of inhibitor giving 50% inhibition being 60 microM for both compounds after 1 h. The effect was dependent on the presence of iron ions in the reaction mixture. Inactivation could be prevented by addition of high concentrations of ascorbate, but not 2-oxoglutarate, before the inactivation period. The same results were obtained with competitive analogues of these cosubstrates. Lysyl hydroxylase from chick embryos was also susceptible to inactivation. Its activity was decreased by 50% after incubation for 1 h with a 150 microM concentration of the inhibitors. When chick-embryo prolyl 4-hydroxylase was incubated with [14-14C]doxorubicin, both enzyme subunits were radioactively labelled, about 70% of the total radioactivity being found in the alpha-subunit. Since the anthracyclines are known to undergo a redox reaction generating semiquinone radicals with Fe3+ only, the results suggest that the enzyme-bound iron ion is oxidized to a tervalent intermediate in uncoupled reaction cycles. The data also suggest that both enzyme subunits contribute to the catalytic site of prolyl 4-hydroxylase.  相似文献   

17.
NADPH-dependent estrogen-2/4-hydroxylase activities in rat brain and liver microsomes were compared with respect to the utilization of different estrogens as substrates and the inhibitory effects of alpha-naphthoflavone, metyrapone and steroids. Of 6 different estrogens used as substrates, only 17 beta- and 17 alpha-estradiol were transformed relatively effectively by brain microsomes. In contrast liver microsomes utilized these two estrogens as well as ethynyl estradiol, estrone and diethylstilbestrol effectively. Estriol was a poor substrate for estrogen-2/4-hydroxylase activity in both tissues. With 40 microM 17 beta-estradiol as substrate the estrogen-2/4-hydroxylase activities in brain and liver were inhibited by alpha-naphthoflavone, metyrapone, progesterone, 17 alpha-hydroxyprogesterone and testosterone. The brain enzyme activity appeared to be more sensitive than the liver enzyme to inhibition by alpha-naphthoflavone and metyrapone. Testosterone propionate (50-100 microM) stimulated the brain enzyme activity significantly. Progesterone and 17 alpha-hydroxyprogesterone were the most effective steroidal inhibitors of brain estrogen-2/4-hydroxylase activity. In the liver the inhibitory potencies of 3 different steroids varied, depending on the estrogen used as substrate. With 17 beta-estradiol, for example, progesterone was the most potent steroidal inhibitor, while corticosterone was the most potent inhibitor when diethylstilbestrol was used as substrate. These findings indicate that rat liver microsomes can utilize a wider range of different estrogens for catecholestrogen formation than brain microsomes and suggest that the profiles of catecholestrogen-forming P-450 isozymes in the two organs differ.  相似文献   

18.
The crucial role of collagen in fibrotic disorders has prompted attempts to develop drugs that inhibit collagen accumulation. Peptides containing the unphysiological amino acid 5-oxaproline (Opr) have recently been found to act as specific syncatalytic inactivators of pure prolyl 4-hydroxylase, the enzyme that catalyzes the formation of 4-hydroxyproline in collagens. The present study indicates that oxaproline-containing peptides benzyloxycarbonyl-Phe-Opr-Gly-benzyl ester (I) and benzyloxycarbonyl-Phe-Opr-Gly-ethyl ester (II) inactivate prolyl 4-hydroxylase in cultured human skin fibroblasts, peptide I being about twice as potent as peptide II. Inactivation by 50% was observed after culturing with about 20-40 microM concentrations of peptide I for 48 h. The inactivation appears to be specific, as no changes were found in the activities of two other intracellular enzymes of collagen synthesis, lysyl hydroxylase and galactosylhydroxylysyl glucosyltransferase. Synthesis of 4-hydroxyproline by the cells was markedly decreased, and 4-hydroxyproline-deficient procollagen accumulated intracellularly, whereas no changes were found in the incorporation of [14C]leucine into protein after culturing of the cells with a 30 microM concentration of peptide I for 48 h. No changes were seen in the viability of the cells or the release of lactate dehydrogenase from them into the culture medium. No significant changes were found in the steady-state levels of the mRNAs for the pro-alpha 1 chains of type I and type III procollagens or for the alpha and beta subunits of prolyl 4-hyroxylase or fibronectin after culturing with 75 microM peptide I for 48 h. The data indicate that inactivation of cellular prolyl 4-hydroxylase has marked effects on cellular 4-hydroxyproline formation and collagen secretion but no effects on the steady-state levels of mRNAs for type I and III procollagens or the two types of subunit of prolyl 4-hydroxylase.  相似文献   

19.
A pathway has been described in the skin for the synthesis of 24-dehydrovitamin D3 (delta 24D3) from 24-dehydroprovitamin D3. The physiologic function of delta 24D3 is unknown, but has been proposed as a potential inhibitor of hepatic vitamin D-25-hydroxylase. We validated an assay for vitamin D-25-hydroxylase in rat hepatic microsomes, using nanomolar amounts of [3H]D3 as substrate, and found that delta 24D3 competitively inhibits vitamin D-25-hydroxylase activity. The apparent Ki was approximately 17 nM, indistinguishable from the Km of approximately 15 nM, suggesting that both delta 24D3 and cholecalciferol have similar affinity for the enzyme. We found no [3H]delta 24D3 in serum or liver extracts after repletion of vitamin D-depleted rats with [3H]vitamin D3 for 4 h or 6 days. A dose of 1 microgram delta 24D3 to vitamin D- and calcium-depleted rats was unable to promote any elevation in the 45Ca transport by everted duodenal sacs or to increase levels of plasma calcium: thus no evidence for biological conversion of delta 24D3 to vitamin D3 was observed. Further studies are needed to determine whether delta 24D3 is released from the skin to the circulation and is taken up by the liver, before physiological relevance can be attributed to this inhibitor.  相似文献   

20.
A single polypeptide is shown to act both as the beta subunit of the proline hydroxylase (EC 1.14.11.2) and as a protein disulfide-isomerase (EC 5.3.4.1). When isolated from chick embryos or rat liver, the beta subunit of prolyl 4-hydroxylase and the enzyme protein disulfide-isomerase have identical molecular weights and peptide maps as produced by digestion with Staphylococcus aureus V8 protease. The apparent molecular weights of both proteins isolated from human placental tissue are slightly higher, and the human beta subunit and one of its peptides have molecular weights about Mr 500 higher than the protein disulfide-isomerase and its corresponding peptide. Experiments with polyclonal and monoclonal antibodies also suggest a structural identity between the two proteins. The beta subunit isolated from the prolyl 4-hydroxylase tetramer has protein disulfide-isomerase activity similar to protein disulfide-isomerase itself, and even the beta subunit when present in the prolyl 4-hydroxylase tetramer has one-half of this activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号