首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seamount fish communities are susceptible to variations due to the oceanographic conditions and level of historical fishing effort. In the NE Atlantic, the Azores is considered an “oceanic seamount ecosystem area” because seamount concentration is high relative to other regions. Scientific information on seamounts in the Azores remains scarce and demersal fishery occurs mostly without any knowledge to endorse sustainable harvest strategies. To make available an important baseline information on dynamics of demersal fish populations inhabiting commercially exploited seamounts, the present study has as specific objectives to (a) describe the taxonomic composition of demersal fish assemblages on underwater mountains, (b) examine whether assemblages vary spatial and temporally, and (c) investigate what drives distributional patterns of species in terms of abundance and size composition. For this, three Azorean seamounts (Açores, Princesa Alice and Mar da Prata) exploited by bottom fishing were selected as case study areas. Data were obtained from scientific surveys and commercial fishery over the past c. 25 years. A total of 84 species from 45 families were identified. Sebastidae, Moridae, Sparidae and Centrophoridae were the most abundant families, mainly represented by Helicolenus dactylopterus, Mora moro, Pagellus bogaraveo and Deania profundorum, respectively. Fish assemblages were more distinguishable spatially than temporally. Depth was identified as the main factor responsible for these differences. The higher occurrence of shallow and intermediate (i.e., up to 600 m) habitats in Princesa Alice and Açores seems to favor the occurrence of a greater number of species and higher abundances in comparison to Mar da Prata. Phycis phycis, Pontinus kuhlii, H. dactylopterus, P. bogaraveo, Conger conger and M. moro were the species which primarily contributed to dissimilarities in assemblage structure among sample groups. Abundance indices and fish sizes showed a decreasing trend for many of these species, especially for those with sedentary behaviour inhabiting historically highly exploited seamount areas. These results highlighted the vulnerability of demersal fishes to the expansion of fishing effort in the offshore seamount areas. Spatial management of seamounts should be a priority being fish conservation balanced with strategies that support sustainable fisheries.  相似文献   

2.
Fish species data from a complex of seamounts off New Zealand termed the "Graveyard Seamount Complex' were analysed to investigate whether fish species composition varied between seamounts. Five seamount features were included in the study, with summit depths ranging from 748-891 m and elevation from 189-352 m. Measures of fish species dominance, rarity, richness, diversity, and similarity were examined. A number of factors were explored to explain variation in species composition, including latitude, water temperature, summit depth, depth at base, elevation, area, slope, and fishing effort. Depth at base and slope relationships were significant with shallow seamounts having high total species richness, and seamounts with a more gradual slope had high mean species richness. Species similarity was modelled and showed that the explanatory variables were driven primarily by summit depth, as well as by the intensity of fishing effort and elevation. The study showed that fish assemblages on seamounts can vary over very small spatial scales, in the order of several km. However, patterns of species similarity and abundance were inconsistent across the seamounts examined, and these results add to a growing literature suggesting that faunal communities on seamounts may be populated from a broad regional species pool, yet show considerable variation on individual seamounts.  相似文献   

3.
Despite a strong increase in research on seamounts and oceanic islands ecology and biogeography, many basic aspects of their biodiversity are still unknown. In the southwestern Atlantic, the Vitória-Trindade Seamount Chain (VTC) extends ca. 1,200 km offshore the Brazilian continental shelf, from the Vitória seamount to the oceanic islands of Trindade and Martin Vaz. For a long time, most of the biological information available regarded its islands. Our study presents and analyzes an extensive database on the VTC fish biodiversity, built on data compiled from literature and recent scientific expeditions that assessed both shallow to mesophotic environments. A total of 273 species were recorded, 211 of which occur on seamounts and 173 at the islands. New records for seamounts or islands include 191 reef fish species and 64 depth range extensions. The structure of fish assemblages was similar between islands and seamounts, not differing in species geographic distribution, trophic composition, or spawning strategies. Main differences were related to endemism, higher at the islands, and to the number of endangered species, higher at the seamounts. Since unregulated fishing activities are common in the region, and mining activities are expected to drastically increase in the near future (carbonates on seamount summits and metals on slopes), this unique biodiversity needs urgent attention and management.  相似文献   

4.
Seamounts: centres of endemism or species richness for ophiuroids?   总被引:1,自引:0,他引:1  
Aim To test the hypotheses that seamounts exhibit high rates of endemism and/or species richness compared to surrounding areas of the continental slope and oceanic ridges. Location The south‐west Pacific Ocean from 19–57° S to 143–171° E. Methods Presence/absence museum data were compiled for seamount and non‐seamount areas at depths between 100 and 1500 m for the Ophiuroidea (brittle‐stars), an abundant and speciose group of benthic invertebrates. Large‐scale biogeographical gradients were examined through multivariate analyses at two spatial scales, at the scale of seamounts (< 1° of latitude/longitude) and regions (5–9°). The robustness of these patterns to spatially inconsistent sampling effort was tested using Monte Carlo‐style simulations. Levels of local endemism and species richness over numbers of samples were compared for seamount and non‐seamount areas using linear regressions. Non‐seamount populations were randomly generated from areas and depth ranges that reflected the typical sampling profile of seamounts. Results Seamount ophiuroid assemblages did not exhibit elevated levels of species richness or narrow‐range endemism compared with non‐seamount areas. Seamounts can exhibit high overall species richness for low numbers of samples, particularly on seamounts supporting a dense coral matrix, but this does not increase with additional sampling at the rates found in non‐seamount areas. There were relatively few identifiable seamount specialists. In general, seamount faunas reflected those found at similar depths in surrounding areas, including the continental slope. Seamount and non‐seamount faunas within the study area exhibited congruent latitudinal and bathymetric species turnover. Main conclusions Seamount faunas were variable for ophiuroid faunal composition, species richness and narrow‐range endemism, reflecting their environmental diversity and complex history. The continental slope was also variable, with some areas being particularly species rich. Broad geomorphological habitat categories such as ‘seamounts’ or ‘continental slope’ may be at the wrong scale to be useful for conservation planning.  相似文献   

5.
Recent studies have countered the paradigm of seamount isolation, confounding conservation efforts at a critical time. Efforts to study deep-sea corals, one of the dominant taxa on seamounts, to understand seamount connectivity, are hampered by a lack of taxonomic keys. A prerequisite for connectivity is species overlap. Attempts to better understand species overlap using DNA barcoding methods suggest coral species are widely distributed on seamounts and nearby features. However, no baseline has been established for variation in these genetic markers relative to morphological species designations for deep-sea octocoral families. Here we assess levels of genetic variation in potential octocoral mitochondrial barcode markers relative to thoroughly examined morphological species in the genus Narella. The combination of six markers used here, approximately 3350 bp of the mitochondrial genome, resolved 83% of the morphological species. Our results show that two of the markers, ND2 and NCR1, are not sufficient to resolve genera within Primnoidae, let alone species. Re-evaluation of previous studies of seamount octocorals based on these results suggest that those studies were looking at distributions at a level higher than species, possibly even genus or subfamily. Results for Narella show that using more markers provides haplotypes with relatively narrow depth ranges on the seamounts studied. Given the lack of 100% resolution of species with such a large portion of the mitochondrial genome, we argue that previous genetic studies have not resolved the degree of species overlap on seamounts and that we may not have the power to even test the hypothesis of seamount isolation using mitochondrial markers, let alone refute it. Thus a precautionary approach is advocated in seamount conservation and management, and the potential for depth structuring should be considered.  相似文献   

6.
Several seamounts are known as ‘oases’ of high abundances and biomass and hotspots of biodiversity in contrast to the surrounding deep-sea environments. Recent studies have indicated that each single seamount can exhibit a high intricate habitat turnover. Information on alpha and beta diversity of single seamount is needed in order to fully understand seamounts contribution to regional and global biodiversity. However, while most of the seamount research has been focused on summits, studies considering the whole seamount structure are still rather poor. In the present study we analysed abundance, biomass and diversity of nematodes collected in distinct physiographic sites and surrounding sediments of the Condor Seamount (Azores, North-East Atlantic Ocean). Our study revealed higher nematode biomass in the seamount bases and values 10 times higher in the Condor sediments than in the far-field site. Although biodiversity indices did not showed significant differences comparing seamount sites and far-field sites, significant differences were observed in term of nematode composition. The Condor summit harboured a completely different nematode community when compared to the other seamount sites, with a high number of exclusive species and important differences in term of nematode trophic diversity. The oceanographic conditions observed around the Condor Seamount and the associated sediment mixing, together with the high quality of food resources available in seamount base could explain the observed patterns. Our results support the hypothesis that seamounts maintain high biodiversity through heightened beta diversity and showed that not only summits but also seamount bases can support rich benthic community in terms of standing stocks and diversity. Furthermore functional diversity of nematodes strongly depends on environmental conditions link to the local setting and seamount structure. This finding should be considered in future studies on seamounts, especially in view of the potential impacts due to current and future anthropogenic threats.  相似文献   

7.
Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal "proxies", and ecological risk assessment.  相似文献   

8.
Coral reef fishes differ in their intrinsic vulnerability to fishing and rates of population recovery after cessation of fishing. We reviewed life history-based predictions about the vulnerability of different groups of coral reef fish and examined the empirical evidence for different rates of population recovery inside no-take marine reserves to (1) determine if the empirical data agree with predictions about vulnerability and (2) show plausible scenarios of recovery within fully protected reserves and periodically-harvested fishery closures. In general, larger-bodied carnivorous reef fishes are predicted to be more vulnerable to fishing while smaller-bodied species lower in the food web (e.g., some herbivores) are predicted to be less vulnerable. However, this prediction does not always hold true because of the considerable diversity of life history strategies in reef fishes. Long-term trends in reef fish population recovery inside no-take reserves are consistent with broad predictions about vulnerability, suggesting that moderately to highly vulnerable species will require a significantly longer time (decades) to attain local carrying capacity than less vulnerable species. We recommend: (1) expanding age-based demographic studies of economically and ecologically important reef fishes to improve estimates of vulnerability; (2) long term (20–40 years), if not permanent, protection of no-take reserves to allow full population recovery and maximum biomass export; (3) strict compliance to no-take reserves to avoid considerable delays in recovery; (4) carefully controlling the timing and intensity of harvesting periodic closures to ensure long-term fishery benefits; (5) the use of periodically-harvested closures together with, rather than instead of, permanent no-take reserves.  相似文献   

9.
Aim Globally, species distribution patterns in the deep sea are poorly resolved, with spatial coverage being sparse for most taxa and true absence data missing. Increasing human impacts on deep‐sea ecosystems mean that reaching a better understanding of such patterns is becoming more urgent. Cold‐water stony corals (Order Scleractinia) form structurally complex habitats (dense thickets or reefs) that can support a diversity of other associated fauna. Despite their widely accepted ecological importance, records of scleractinian corals on seamounts are patchy and simply not available for most of the global ocean. The objective of this paper is to model the global distribution of suitable habitat for stony corals on seamounts. Location Seamounts worldwide. Methods We compiled a database containing all accessible records of scleractinian corals on seamounts. Two modelling approaches developed for presence‐only data were used to predict global habitat suitability for seamount scleractinians: maximum entropy modelling (Maxent) and environmental niche factor analysis (ENFA). We generated habitat‐suitability maps and used a cross‐validation process with a threshold‐independent metric to evaluate the performance of the models. Results Both models performed well in cross‐validation, although the Maxent method consistently outperformed ENFA. Highly suitable habitat for seamount stony corals was predicted to occur at most modelled depths in the North Atlantic, and in a circumglobal strip in the Southern Hemisphere between 20° and 50° S and shallower than around 1500 m. Seamount summits in most other regions appeared much less likely to provide suitable habitat, except for small near‐surface patches. The patterns of habitat suitability largely reflect current biogeographical knowledge. Environmental variables positively associated with high predicted habitat suitability included the aragonite saturation state, and oxygen saturation and concentration. By contrast, low levels of dissolved inorganic carbon, nitrate, phosphate and silicate were associated with high predicted suitability. High correlation among variables made assessing individual drivers difficult. Main conclusions Our models predict environmental conditions likely to play a role in determining large‐scale scleractinian coral distributions on seamounts, and provide a baseline scenario on a global scale. These results present a first‐order hypothesis that can be tested by further sampling. Given the high vulnerability of cold‐water corals to human impacts, such predictions are crucial tools in developing worldwide conservation and management strategies for seamount ecosystems.  相似文献   

10.
Gorgonian octocorals are among the dominant deep‐sea benthic taxa of many seamounts. Seamount fauna are threatened by destructive fisheries practices, yet little is known about the physical and biological processes that maintain species on seamounts. Few informative molecular markers have been found in deep‐water corals or in gorgonian octocorals. Here we report the characterization of six highly polymorphic microsatellite loci for the deep‐sea precious coral Corallium lauuense from Hawaii using enriched genomic DNA libraries. These loci are being used to examine gene flow and stock structure among seamount and island populations to better understand dispersal and connectivity of seamount species.  相似文献   

11.
In the last twenty years, several global targets for protection of marine biodiversity have been adopted but have failed. The Convention on Biological Diversity (CBD) aims at preserving 10% of all the marine biomes by 2020. For achieving this goal, ecologically or biologically significant areas (EBSA) have to be identified in all biogeographic regions. However, the methodologies for identifying the best suitable areas are still to be agreed. Here, we propose a framework for applying the CBD criteria to locate potential ecologically or biologically significant seamount areas based on the best information currently available. The framework combines the likelihood of a seamount constituting an EBSA and its level of human impact and can be used at global, regional and local scales. This methodology allows the classification of individual seamounts into four major portfolio conservation categories which can help optimize management efforts toward the protection of the most suitable areas. The framework was tested against 1000 dummy seamounts and satisfactorily assigned seamounts to proper EBSA and threats categories. Additionally, the framework was applied to eight case study seamounts that were included in three out of four portfolio categories: areas highly likely to be identified as EBSA with high degree of threat; areas highly likely to be EBSA with low degree of threat; and areas with a low likelihood of being EBSA with high degree of threat. This framework will allow managers to identify seamount EBSAs and to prioritize their policies in terms of protecting undisturbed areas, disturbed areas for recovery of habitats and species, or both based on their management objectives. It also identifies seamount EBSAs and threats considering different ecological groups in both pelagic and benthic communities. Therefore, this framework may represent an important tool to mitigate seamount biodiversity loss and to achieve the 2020 CBD goals.  相似文献   

12.
Morato T  Hoyle SD  Allain V  Nicol SJ 《PloS one》2010,5(12):e14453

Background

Seamounts have been identified as aggregating locations for pelagic biodiversity including tuna; however the topography and prevailing oceanography differ between seamounts and not all are important for tuna. Although a relatively common feature in oceanic ecosystems, little information is available that identifies those that are biologically important. Improved knowledge offers opportunities for unique management of these areas, which may advance the sustainable management of oceanic resources. In this study, we evaluate the existence of an association between seamounts and tuna longline fisheries at the ocean basin scale, identify significant seamounts for tuna in the western and central Pacific Ocean, and quantify the seamount contribution to the tuna longline catch.

Methodology/Principal Findings

We use data collected for the Western and Central Pacific Ocean for bigeye, yellowfin, and albacore tuna at the ocean basin scale. GLMs were applied to a coupled dataset of longline fisheries catch and effort, and seamount location information. The analyses show that seamounts may be associated with an annual longline combined catch of 35 thousand tonnes, with higher catch apparent for yellowfin, bigeye, and albacore tuna on 17%, 14%, and 14% of seamounts respectively. In contrast 14%, 18%, and 20% of seamounts had significantly lower catches for yellowfin, bigeye and albacore tuna respectively. Studying catch data in relation to seamount positions presents several challenges such as bias in location of seamounts, or lack of spatial resolution of fisheries data. Whilst we recognize these limitations the criteria used for detecting significant seamounts were conservative and the error in identification is likely to be low albeit unknown.

Conclusions/Significance

Seamounts throughout the study area were found to either enhance or reduce tuna catch. This indicates that management of seamounts is important Pacific-wide, but management approaches must take account of local conditions. Management of tuna and biodiversity resources in the region would benefit from considering such effects.  相似文献   

13.
The importance of seamounts as foraging hotspots for cetaceans depends on interactions between ocean flow and topographical features that concentrate prey. However, the oceanographic processes driving these aggregations are still unclear. Here, we analyzed two months of passive acoustic recordings from two remote seamounts in the Northeast Atlantic, Atlantis and Irving, in relation to regional oceanography and estimates of prey biomass. Delphinids and sperm whales were detected in both seamounts with higher foraging activity at night, indicating feeding on diel migrating prey. There were more detections of delphinids and sperm whales at Atlantis than at Irving. These two seamounts lie in different oceanographic settings created by the Azores Current that separates colder and less saline water masses in the north (Atlantis seamount) from warmer and more saline waters in the south (Irving seamount). Irving seamount is only affected by transient features like eddies that enhance productivity for short time periods. These conditions translate into more productive waters at Atlantis seamount than at Irving, as shown by predicted prey biomasses that ultimately attract top predators. Comparative studies such as this one can help to explain the main drivers of presence of top predators at seamounts.  相似文献   

14.
We review interactions between extrinsic threats to marine fishes and intrinsic aspects of their biology that determine how populations and species respond to those threats. Information is available on the status of less than 5% of the world's approximately 15500 marine fish species, most of which are of commercial importance. By 2001, based on data from 98 North Atlantic and northeast Pacific populations, marine fishes had declined by a median 65% in breeding biomass from known historic levels; 28 populations had declined by more than 80%. Most of these declines would be sufficient to warrant a status of threatened with extinction under international threat criteria. However, this interpretation is highly controversial, in part because of a perception that marine fishes have a suite of life history characteristics, including high fecundity and large geographical ranges, which might confer greater resilience than that shown by terrestrial vertebrates. We review 15 comparative analyses that have tested for these and other life history correlates of vulnerability in marine fishes. The empirical evidence suggests that large body size and late maturity are the best predictors of vulnerability to fishing, regardless of whether differences among taxa in fishing mortality are controlled; there is no evidence that high fecundity confers increased resilience. The evidence reviewed here is of direct relevance to the diverse criteria used at global and national levels by various bodies to assess threat status of fishes. Simple life history traits can be incorporated directly into quantitative assessment criteria, or used to modify the conclusions of quantitative assessments, or used as preliminary screening criteria for assessment of the approximately 95% of marine fish species whose status has yet to be evaluated either by conservationists or fisheries scientists.  相似文献   

15.
Deep-water trawl surveys on seamounts around New Caledonia yielded62 specimens of the little-known genus, Scaeurgus. Members ofthis genus of octopuses typically occur at depths of 200–500m in temperate and tropical latitudes worldwide. Prior to thisstudy, Scaeurgus was considered to contain one to two species.The new material from New Caledonia contained a surprising diversityof Scaeurgus species from a small area: three distinct new speciesare described and limited material of a further two taxa isreported. A pygmy member of this genus is reported for the firsttime. Distributions of these new taxa are consistent with reportsof high endemism on the seamount systems in this region. Fifty-eightof the 62 specimens were collected from seamounts, with fourof the five taxa unique to a single seamount. (Received 12 January 2004; accepted 28 January 2005)  相似文献   

16.
It has been speculated that some deep-sea fishes can display large vertical migrations and likely doing so to explore the full suite of benthopelagic food resources, especially the pelagic organisms of the deep scattering layer (DSL). This would help explain the success of fishes residing at seamounts and the increased biodiversity found in these features of the open ocean. We combined active plus passive acoustic telemetry of blackspot seabream with in situ environmental and biological (backscattering) data collection at a seamount to verify if its behaviour is dominated by vertical movements as a response to temporal changes in environmental conditions and pelagic prey availability. We found that seabream extensively migrate up and down the water column, that these patterns are cyclic both in short-term (tidal, diel) as well as long-term (seasonal) scales, and that they partially match the availability of potential DSL prey components. Furthermore, the emerging pattern points to a more complex spatial behaviour than previously anticipated, suggesting a seasonal switch in the diel behaviour mode (benthic vs. pelagic) of seabream, which may reflect an adaptation to differences in prey availability. This study is the first to document the fine scale three-dimensional behaviour of a deep-sea fish residing at seamounts.  相似文献   

17.
At present, researchers propose that over 14,000 seamounts exist and, like their terrestrial analogues, function like islands. In addition, seamounts are described as oases, biodiversity hotspots, and lush coral/sponge gardens. Here I discuss the extent to which these tenets regarding seamounts may be inappropriate, suffer from a lack of support, and be over-generalizations of a broad range of environmental types encountered on seamounts. Ultimately, for seamount science to progress, we need to challenge our conventional wisdom on these habitats and the extent to which all seamounts function in a similar manner.
  相似文献   

18.
Larger-bodied species in a wide range of taxonomic groups including mammals, fishes and birds tend to decline more steeply and are at greater risk of extinction. Yet, the diversity in life histories is governed not only by body size, but also by time-related traits. A key question is whether this size-dependency of vulnerability also holds, not just locally, but globally across a wider range of environments. We test the relative importance of size- and time-related life-history traits and fishing mortality in determining population declines and current exploitation status in tunas and their relatives. We use high-quality datasets of half a century of population trajectories combined with population-level fishing mortalities and life-history traits. Time-related traits (e.g. growth rate), rather than size-related traits (e.g. maximum size), better explain the extent and rate of declines and current exploitation status across tuna assemblages, after controlling for fishing mortality. Consequently, there is strong geographical patterning in population declines, such that populations with slower life histories (found at higher cooler latitudes) have declined most and more steeply and have a higher probability of being overfished than populations with faster life histories (found at tropical latitudes). Hence, the strong, temperature-driven, latitudinal gradients in life-history traits may underlie the global patterning of population declines, fisheries collapses and local extinctions.  相似文献   

19.
The assessment of fish densities using point abundance sampling by electro‐fishing requires information about the size of the sample area. For electro‐fishing the effective fishing range depends on biological effects such as species and length of fish as well as physical effects like conductivity of water or substrate type. The present study investigates systematically the impact of conductivity and substrate type on the extension of the electrical field of a battery‐powered electro‐fishing gear (DEKA 3000, Marsberg, Germany), modified for larval and juvenile fishes. Threshold values for galvanotaxis were examined for juvenile fishes of five species in terms of current densities. Based on 71 experiments a general function relating body length to current density threshold values was developed. Optimal electrical current flow periods of 10 s were determined. For three different substrate types (gravel, sand, mud) a formula has been developed to quantify biological and physical effects on the effective fishing range. Each equation included information on the length of fish and the ambient conductivity. An increase in the effective fishing range of about 10% every 0.1 mS cm?1 was established. Reduction of the fishing range over muddy substrate was about 20–30% compared with coarse gravel or sand. This study provides a sufficient tool to calculate area‐related densities of larval and juvenile fishes in different habitat types of a large river system using point abundance sampling by electro‐fishing. Finally, calculated fish densities were evaluated by different types of fishing gear.  相似文献   

20.
With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号