首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical properties of biological molecular aggregates are essential to their function. A remarkable example are double-stranded DNA viruses such as the φ29 bacteriophage, that not only has to withstand pressures of tens of atmospheres exerted by the confined DNA, but also uses this stored elastic energy during DNA translocation into the host. Here we show that empty prolated φ29 bacteriophage proheads exhibit an intriguing anisotropic stiffness which behaves counterintuitively different from standard continuum elasticity predictions. By using atomic force microscopy, we find that the φ29 shells are approximately two-times stiffer along the short than along the long axis. This result can be attributed to the existence of a residual stress, a hypothesis that we confirm by coarse-grained simulations. This built-in stress of the virus prohead could be a strategy to provide extra mechanical strength to withstand the DNA compaction during and after packing and a variety of extracellular conditions, such as osmotic shocks or dehydration.  相似文献   

2.
The spatial and temporal changes of the mechanical properties of living cells reflect complex underlying physiological processes. Following these changes should provide valuable insight into the biological importance of cellular mechanics and their regulation. The tip of an atomic force microscope (AFM) can be used to indent soft samples, and the force versus indentation measurement provides information about the local viscoelasticity. By collecting force-distance curves on a time scale where viscous contributions are small, the forces measured are dominated by the elastic properties of the sample. We have developed an experimental approach, using atomic force microscopy, called force integration to equal limits (FIEL) mapping, to produce robust, internally quantitative maps of relative elasticity. FIEL mapping has the advantage of essentially being independent of the tip-sample contact point and the cantilever spring constant. FIEL maps of living Madine-Darby canine kidney (MDCK) cells show that elasticity is uncoupled from topography and reveal a number of unexpected features. These results present a mode of high-resolution visualization in which the contrast is based on the mechanical properties of the sample.  相似文献   

3.
Atomic force microscopy (AFM) allows for nanometer-scale investigation of cells and molecules. Recent advances have enabled its application in cancer research and diagnosis. The physicochemical properties of live cells undergo changes when their physiological conditions are altered. These physicochemical properties can therefore reflect complex physiological processes occurring in cells. When cells are in the process of carcinogenesis and stimulated by external stimuli, their morphology, elasticity, and adhesion properties may change. AFM can perform surface imaging and ultrastructural observation of live cells with atomic resolution under near-physiological conditions, collecting force spectroscopy information which allows for the study of the mechanical properties of cells. For this reason, AFM has potential to be used as a tool for high resolution research into the ultrastructure and mechanical properties of tumor cells. This review describes the working principle, working mode, and technical points of atomic force microscopy, and reviews the applications and prospects of atomic force microscopy in cancer research.  相似文献   

4.
Bridged bis(beta-cyclodextrin) 1 with a pyridine-2,6-dicarboxamide linker was synthesized, and its inclusion complexation behavior with some aliphatic oligopeptides was investigated in aqueous buffer solution of pH 2.0 and 7.2 at 25 degrees C by means of circular dichroism, fluorescence, and 2D NMR techniques. The results show that the resulting inclusion complexes of 1 with oligopeptides adopt a cooperative "cyclodextrin-guest-cyclodextrin" sandwich binding mode in a neutral media, but a "guest-linker-cyclodextrin" coinclusion binding mode in an acidic media. These switchable binding modes consequently rationalize the binding ability of bis(beta-cyclodextrin) 1 at different pH values; that is, 1 shows the stronger association with oligopeptides in a neutral media. Because of the simultaneous contributions of hydrophobic, hydrogen bond, and electrostatic interactions, bis(beta-cyclodextrin) 1 affords length-selectivity up to 4.7 for the Gly-Gly/Gly-Gly-Gly pair at pH 2.0 and sequence-selectivity up to 4.2 for the Gly-Leu/Leu-Gly pair at pH 7.2. These phenomena are discussed from the viewpoint of the size-fit concept and the multipoint recognitions between host and guest.  相似文献   

5.
《Biophysical journal》2022,121(6):919-931
This study investigates whether the biochemical and antiviral effects of organic compounds that bind different sites in the mature human immunodeficiency virus capsid may be related to the modulation of different mechanical properties of the protein lattice from which the capsid is built. Mechanical force was used as a probe to quantify, in atomic force microscopy experiments at physiological pH and ionic strength, ligand-mediated changes in capsid lattice elasticity, breathing, strength against local dislocation by mechanical stress, and resistance to material fatigue. The results indicate that the effects of the tested compounds on assembly or biochemical stability can be linked, from a physics-based perspective, to their interference with the mechanical behavior of the viral capsid framework. The antivirals CAP-1 and CAI-55 increased the intrinsic elasticity and breathing of the capsid protein lattice and may entropically decrease the probability of the capsid protein to assemble into a functionally competent conformation. Antiviral PF74 increased the resistance of the capsid protein lattice to disruption by mechanical stress and material fatigue and may enthalpically strengthen the basal capsid lattice against breakage and disintegration. This study provides proof of concept that the interrogation of the mechanical properties of the nanostructured protein material that makes a virus capsid may provide fundamental insights into the biophysical action of capsid-binding antiviral agents. The implications for drug design by specifically targeting the biomechanics of viruses are discussed.  相似文献   

6.
Liu J  Sun N  Bruce MA  Wu JC  Butte MJ 《PloS one》2012,7(5):e37559
We describe a method using atomic force microscopy (AFM) to quantify the mechanobiological properties of pluripotent, stem cell-derived cardiomyocytes, including contraction force, rate, duration, and cellular elasticity. We measured beats from cardiomyocytes derived from induced pluripotent stem cells of healthy subjects and those with dilated cardiomyopathy, and from embryonic stem cell lines. We found that our AFM method could quantitate beat forces of single cells and clusters of cardiomyocytes. We demonstrate the dose-responsive, inotropic effect of norepinephrine and beta-adrenergic blockade of metoprolol. Cardiomyocytes derived from subjects with dilated cardiomyopathy showed decreased force and decreased cellular elasticity compared to controls. This AFM-based method can serve as a screening tool for the development of cardiac-active pharmacological agents, or as a platform for studying cardiomyocyte biology.  相似文献   

7.
Cancer cells are usually found to be softer than normal cells, but their stiffness changes when they are in contact with different environments because of mechanosensitivity. For example, they adhere to a given substrate by tuning their cytoskeleton, thus affecting their rheological properties. This mechanism could become efficient when cancer cells invade the surrounding tissues, and they have to remodel their cytoskeleton in order to achieve particular deformations. Here we use an atomic force microscope in force modulation mode to study how local rheological properties of cancer cells are affected by a change of the environment. Cancer cells were plated on functionalized polyacrylamide substrates of different stiffnesses as well as on an endothelium substrate. A new correction of the Hertz model was developed because measurements require one to account for the precise properties of the thin, layered viscoelastic substrates. The main results show the influence of local cell rheology (the nucleus, perinuclear region, and edge locations) and the role of invasiveness. A general mechanosensitive trend is found by which the cell elastic modulus and transition frequency increase with substrate elasticity, but this tendency breaks down with a real endothelium substrate. These effects are investigated further during cell transmigration, when the actin cytoskeleton undergoes a rapid reorganization process necessary to push through the endothelial gap, in agreement with the local viscoelastic changes measured by atomic force microscopy. Taken together, these results introduce a paradigm for a new—to our knowledge—possible extravasation mechanism.  相似文献   

8.
Because of the potential importance of carbon nanotubes (CNT) in renewable energy and other fields, molecular orbital ab initio calculations are used to study the relation between mechanical and electronic properties of such structures. We estimate a modulus of elasticity of 1.3 TPa and find out that the mechanism of CNT structure deformation is dependent on their chirality. Armchair and chiral nanotubes have ductile deformation fracture while zigzag have both ductile and brittle; on the other hand armchair nanotubes fracture and form two caps while chiral nanotubes adopt a helical-structure conformation. In addition, the energy gap between occupied and unoccupied molecular orbitals increases when nanotubes are under plastic deformation. This strong coupling between mechanical and electrical properties can be used to tune CNT mechanically to specific electronic bandgaps, affecting directly their electromagnetic absorption properties.  相似文献   

9.
The lipid composition of cellular membranes and the balance between the different lipid components can be impacted by aging, certain pathologies, specific diets and other factors. This is the case in a subgroup of individuals with psychiatric disorders, such as schizophrenia, where cell membranes of patients have been shown to be deprived in polyunsaturated fatty acids (PUFAs), not only in brain areas where the target receptors are expressed but also in peripheral tissues. This PUFA deprivation thus represents a biomarker of such disorders that might impact not only the interaction of antipsychotic medications with these membranes but also the activation and signaling of the targeted receptors embedded in the lipid membrane. Therefore, it is crucial to understand how PUFAs levels alterations modulate the different physical properties of membranes.In this paper, several biophysical approaches were combined (Laurdan fluorescence spectroscopy, atomic force microscopy, differential scanning calorimetry, molecular modeling) to characterize membrane properties such as fluidity, elasticity and thickness in PUFA-enriched cell membranes and lipid model systems reflecting the PUFA imbalance observed in some diseases. The impact of both the number of unsaturations and their position along the chain on the above properties was investigated. Briefly, data revealed that PUFA presence in membranes increases membrane fluidity, elasticity and flexibility and decreases its thickness and order parameter. Both the level of unsaturation and their position affect these membrane properties.  相似文献   

10.
Park J  Kahng B  Kamm RD  Hwang W 《Biophysical journal》2006,90(7):2510-2524
We investigated the supramolecular structure and continuum mechanical properties of a beta-sheet nanofiber comprised of a self-assembling peptide ac-[RARADADA]2-am using computer simulations. The supramolecular structure was determined by constructing candidate filaments with dimensions compatible with those observed in atomic force microscopy and selecting the most stable ones after running molecular dynamics simulations on each of them. Four structures with different backbone hydrogen-bonding patterns were identified to be similarly stable. We then quantified the continuum mechanical properties of these identified structures by running three independent simulations: thermal motion analysis, normal mode analysis, and steered molecular dynamics. Within the range of deformations investigated, the filament showed linear elasticity in transverse directions with an estimated persistence length of 1.2-4.8 microm. Although side-chain interactions govern the propensity and energetics of filament self-assembly, we found that backbone hydrogen-bonding interactions are the primary determinant of filament elasticity, as demonstrated by its effective thickness, which is smaller than that estimated by atomic force microscopy or from the molecular geometry, as well as by the similar bending stiffness of a model filament without charged side chains. The generality of our approach suggests that it should be applicable to developing continuum elastic ribbon models of other beta-sheet filaments and amyloid fibrils.  相似文献   

11.
Differential complexation of fenoprofen enantiomers by cyclomaltoheptaose (beta-cyclodextrin) was investigated by Monte Carlo docking simulations. The chiral discrimination of (R)- and (S)-fenoprofen by beta-cyclodextrin was discussed in terms of the difference in the interaction energies and the patterns of molecular interactions. The interaction energies between each enantiomer of fenoprofen and beta-cyclodextrin were consistent with the reported experimental results that showed that the S isomer interacted preferentially with beta-cyclodextrin and was retained longer in a separation process than the R isomer. The thermodynamic preference of inclusion complex formation of (S)-fenoprofen could be explained by the orientation of the phenyl group attached to the chiral carbon, which provided closer contact and thus more favorable intermolecular interactions between the host and guest molecule. The results presented here would be very useful for the prediction of chiral recognition ability of beta-cyclodextrin.  相似文献   

12.
Mitosis is an important physiological event accompanying with dramatic changes of cellar biophysical properties. Failure of mitosis results in cell death or chromosome aneuploidy. In this study, we used atomic force microscopy to probe and compare the biophysical properties of tumor cells at different stages during mitosis. The rounding forces of MCF-7 cells oscillated during mitosis. At anaphase, the average elasticity of cells was higher than that at other phases. Cholesterol depletion with M\(\upbeta \)CD led to an increase in the average elasticity, whereas the average roughness of membrane surface decreased at the absence of cholesterol. Our study indicated that the distribution of actin filaments could affect the biophysical properties of tumor cells and cellular morphology during mitosis. Furthermore, the biophysical properties of tumor cells were also regulated by membrane cholesterol during mitosis. This work provides a new detection approach for monitoring tumor cell development at single cell level.  相似文献   

13.
Zhang Y  Yu S  Bao F 《Carbohydrate research》2008,343(14):2504-2508
Crystal structures of cyclomaltoheptaose (beta-cyclodextrin) complexes with p-aminobenzoic acid and o-aminobenzoic acid have been determined by single-crystal X-ray diffraction. The space group of the beta-cyclodextrin-p-aminobenzoic acid complex is P2(1) with a host:guest stoichiometry of 1:1, and that of the beta-cyclodextrin-o-aminobenzoic acid complex is P1 with a stoichiometry of 2:3. The different structures of the guest molecules lead to the different molecular packing structures of the two complexes. Intermolecular hydrogen-bond interactions are the main force that stabilize the supramolecular systems. In both crystals, there are water molecules located near the cavity rims and in interstices between molecules of beta-cyclodextrin participating in formation of intermolecular hydrogen bonds.  相似文献   

14.
Recent atomic force microscopy stretching measurements of single polysaccharide molecules suggest that their elasticity is governed by force-induced conformational transitions of the pyranose ring. However, the mechanism of these transitions and the mechanics of the pyranose ring are not fully understood. Here we use steered molecular dynamics simulations of the stretching process to unravel the mechanism of forced conformational transitions in 1,6 linked polysaccharides. In contrast to most sugars, 1,6 linked polysaccharides have an extra bond in their inter-residue linkage, C5-C6, around which restricted rotations occur and this additional degree of freedom increases the mechanical complexity of these polymers. By comparing the computational results with the atomic force microscopy data we determine that forced rotations around the C5-C6 bond have a significant and different impact on the elasticity of alpha- and beta-linked polysaccharides. Beta-linkages of a polysaccharide pustulan force the rotation around the C5-C6 bonds and produce a Hookean-like elasticity but do not affect the conformation of the pyranose rings. However, alpha-linkages of dextran induce compound conformational transitions that include simultaneous rotations around the C5-C6 bonds and chair-boat transitions of the pyranose rings. These previously not-recognized transitions are responsible for the characteristic plateau in the force-extension relationship of dextran.  相似文献   

15.
High resolution transmission electron microscopy (HRTEM) studies of single wall carbon nanotubes containing nanocrystals of inorganic salts and other binary compounds show that the confining geometry of the host tubules substantially modifies the local structural and co-ordination properties of the inclusion materials.  相似文献   

16.
Molecular basis of fibrin clot elasticity   总被引:3,自引:0,他引:3  
Blood clots must be stiff to stop hemorrhage yet elastic to buffer blood's shear forces. Upsetting this balance results in clot rupture and life-threatening thromboembolism. Fibrin, the main component of a blood clot, is formed from molecules of fibrinogen activated by thrombin. Although it is well known that fibrin possesses considerable elasticity, the molecular basis of this elasticity is unknown. Here, we use atomic force microscopy (AFM) and steered molecular dynamics (SMD) to probe the mechanical properties of single fibrinogen molecules and fibrin protofibrils, showing that the mechanical unfolding of their coiled-coil alpha helices is characterized by a distinctive intermediate force plateau in the systems' force-extension curve. We relate this plateau force to a stepwise unfolding of fibrinogen's coiled alpha helices and of its central domain. AFM data show that varying pH and calcium ion concentrations alters the mechanical resilience of fibrinogen. This study provides direct evidence for the coiled alpha helices of fibrinogen to bring about fibrin elasticity.  相似文献   

17.
The inclusion complexation behavior of chiral members of cinchona alkaloid with beta- and gamma-cyclodextrins (1 and 2) and 6,6(')-trimethylenediseleno-bridged bis(beta-cyclodextrin) (3) was assessed by means of fluorescence and 2D-NMR spectroscopy. The spectrofluorometric titrations have been performed in aqueous buffer solution (pH 7.20) at 25.0 degrees C to determine the stability constants of the inclusion complexation of 1-3 with guest molecules (i.e., cinchonine, cinchonidine, quinine, and quinidine) in order to quantitatively investigate the molecular selective binding ability. The stability constants of the resulting complexes of 2 with guest molecules are larger than that of 1. As a result of cooperative binding, the stability constants of inclusion complexation of dimeric beta-cyclodextrin 3 with cinchonidine and cinchonine are higher than that of parent 1 by factor of 4.5 and 2.4, respectively. These results are discussed from the viewpoint of the size-fit and geometric complementary relationship between the host and guest.  相似文献   

18.
叶志义  范霞 《生命科学》2009,(1):156-162
细胞表面的力学性质会随着细胞所处环境的不同而发生改变,它的变化间接反映出胞内复杂的生理过程。原子力显微镜(atomic force microscope,AFM)能以高的灵敏度和分辨率检测活体细胞,通过利用赫兹模型分析力曲线可以获得细胞的弹性信息。本文简介了原子力显微镜的工作原理与工作模式,着重介绍利用AFM力曲线检测细胞弹性的方法及其在细胞运动、细胞骨架、细胞黏附、细胞病理等方面的应用成果,表明AFM已经成为细胞弹性研究中十分重要的显微技术。  相似文献   

19.
During osteoarthritis (OA)-triggered cartilage degeneration, the chondrocytes spatially rearrange from single to double strings, and then to small and finally big clusters. Both the extracellular matrix (ECM) and the pericellular matrix (PCM) progressively degrade in osteoarthritis, changing the overall mechanical properties of the cartilage. We investigated the mechanical properties particularly elasticity of the ECM and PCM and their interconnection as a function of chondrocyte spatial organisation.Human articular cartilage samples from 30 patients were categorised according to their cellular pattern. Elasticity of the ECM and PCM was assessed by means of atomic force microscopy (AFM). Significant decreases were observed in the elasticity of both the ECM and the PCM with each change of cellular pattern, except from single to double strings in the ECM (p = 0.072). Spatial reorganisation strongly correlated with the elasticity of the ECM (r = −0.768, p < 0.001) and of the PCM (r = −0.729, p < 0.001). The ECM/PCM ratio remained unchanged (r = −0.099, p = 0.281).This study is the first to describe and quantify the differences in the elastic moduli of the ECM in relation to the PCM on the basis of chondrocyte spatial arrangement. This study shows that the elastic changes of the ECM and the PCM occur simultaneously, unidirectionally, and to a comparable degree.  相似文献   

20.
Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micropatterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This response is influenced by overexpression of the actin crosslinker α-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号