首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two major immunocross-reactive polypeptides of the Drosophila nuclear envelope, distinguishable in interphase cells on the basis of one-dimensional SDS-PAGE mobility, have been localized to the nuclear lamina by immunoelectron microscopy. These have been designated lamins Dm1 and Dm2. Both lamins are apparently derived posttranslationally from a single, primary translation product, lamin Dm0. A pathway has been established whereby lamin Dm0 is processed almost immediately upon synthesis in the cytoplasm to lamin Dm1. Processing occurs posttranslationally, is apparently proteolytic, and has been reconstituted from cell-free extracts in vitro. Processing in vitro is ATP dependent. Once assembled into the nuclear envelope, a portion of lamin Dm1 is converted into lamin Dm2 by differential phosphorylation. Throughout most stages of development and in Schneider 2 tissue culture cells, both lamin isoforms are present in approximately equal abundance. However, during heat shock, lamin Dm2 is converted nearly quantitatively into lamin Dm1. Implications for understanding the regulation of nuclear lamina plasticity through normal growth and in response to heat shock are discussed.  相似文献   

2.
Molecular analysis of the Drosophila nuclear lamin gene   总被引:4,自引:0,他引:4  
  相似文献   

3.
Two hybrid cell lines (DM88-5E12 and DM88-4C9) secreting monoclonal antibodies against DNA polymerase alpha-primase complex from Drosophila melanogaster Kc cells were established by immunizing mice with the complex partially purified by a conventional method. The IgG subclasses of both antibodies were IgG1. Both antibodies immunoprecipitated the DNA polymerase alpha-primase complex from D. melanogaster Kc cells. The DNA-polymerizing activity was neutralized by 4C9 antibody, but not by 5E12 antibody. The DNA priming activity was not neutralized by either antibody. These antibodies did not cross-react to HeLa DNA polymerase alpha-primase complex. A rapid, two-step purification of DNA polymerase alpha-primase complex from D. melanogaster Kc cell was carried out by 5E12 antibody column chromatography followed by single-stranded DNA cellulose column chromatography. The immunoaffinity-purified enzyme had both DNA-polymerizing and DNA-priming activities with the specific activities of 50,000 and 2,000 units/mg, respectively. The effects of aphidicolin, NEM, ddTTP, BuPdGTP, and DMSO on the enzyme activity showed that the purified enzyme was DNA polymerase alpha, but not DNA polymerase beta, gamma, or delta. The purified enzyme consisted of polypeptides with apparent molecular weights of 180 (and 145, 140, 130 kDa), 72, 63, 51, and 49 kDa. The 5E12 antibody was shown to bind to all the high-molecular-weight polypeptides, 180, 145, 140, and 130 kDa, by immuno-Western blotting analysis.  相似文献   

4.
Two isoforms of a single nuclear lamin, distinguishable on one-dimensional SDS-polyacrylamide gels, have previously been identified in Drosophila nuclei during interphase. A third species, designated lamin Dmmit, has now been identified as soluble in extracts of Drosophila tissue culture cells blocked in mitosis by drugs. An apparently identical form is the only lamin species detectable in late-stage egg chambers and early embryos. Phosphoamino acid analyses suggest that the conversion of lamins Dm1 and Dm2 to lamin Dmmit is brought about by a specific rearrangement of phosphate groups rather than by dramatic net changes in the levels of lamin phosphorylation. The residues involved in these phosphorylation/dephosphorylation reactions have been tentatively mapped to a 17.8-kD cyanogen bromide fragment containing amino acids 385-547. This represents a potential "hinge" domain in the lamin structure between the end of coil 2 and the globular COOH terminus. These results have implications for understanding the regulation of nuclear envelope breakdown during mitosis and karyoskeletal dynamics during oogenesis and early embryogenesis.  相似文献   

5.
Thromboxane synthase has been purified 620-fold from porcine lung microsomes by a three-step purification procedure including Lubrol-PX solubilization, reactive blue-agarose chromatography, and immunoaffinity chromatography. The purified enzyme exhibited a single protein band (53,000 daltons) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Rabbit antiserum raised against the purified enzyme immunoprecipitated thromboxane synthase activity from crude enzyme preparations of porcine lung, cow lung, and human platelets, indicating the existence of structural homology of the enzyme in these species. Immunoblotting experiment identified the same polypeptide (53,000 daltons) in porcine lung and a polypeptide of 50,000 daltons in human platelets, confirming the identity of the enzyme and the specificity of the antiserum. Purified thromboxane synthase is a hemoprotein with a Soret-like absorption peak at 418 nm. The enzyme reaction has a Km for 15-hydroxy-9 alpha, 11 alpha-peroxidoprosta-5, 13-dienoic acid of 12 microM, an optimal pH of 7.5, and an optimal temperature of reaction at 30 degrees C. Purified thromboxane synthase catalyzed the formation of both thromboxane B2 and 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT). The ratios of HHT to thromboxane B2 varied from 1.6 to 2.1 dependent on the reaction conditions. Except that HHT was formed at a greater rate, the formation of HHT and that of thromboxane responded identically to pH, temperature, substrate concentration, kinetics of formation, metal ions, and inhibitors suggesting that the two products are probably formed at the same active site via a common intermediate. Thromboxane synthase was irreversibly inactivated by 15-hydroxy-9 alpha, 11 alpha-peroxidoprosta-5,13-dienoic acid during catalysis and by treatment of 15-hydroperoxyeicosatetraenoic acid. The irreversible inactivation, however, could be protected by reversible inhibitors such as sodium (E)-3-[4-(1-imidazolylmethyl)phenyl]-2-propenoate and 15-hydroxy-11 alpha,9 alpha-(epoxymethano)-prosta-5,13-dienoic acid, suggesting that the inactivation occurred at the active site of the enzyme. The catalytic inactivation of thromboxane synthase and the greater rate of formation of HHT in thromboxane-synthesizing system may probably play important regulatory roles in the control of thromboxane synthesis.  相似文献   

6.
Leucine aminopeptidase was purified from human liver cytosol to homogeneity, 1538-fold, with a yield of 84.4% by immunoaffinity chromatography. Increases in the activity and the stability of the enzyme were simultaneously observed during the purification procedure, suggesting the presence of some endogenous inhibitor in cytosol. The specific activity and Km value of the enzyme for L-leucine amide were found to be 58.00 mumol/min/mg of protein and 4.02 mM, respectively, at pH 8.0. The molecular weight of the enzyme was determined to be 360,000 by both polyacrylamide gradient gel electrophoresis and Sephadex G-200 gel filtration. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of native and dimethyl suberimidate cross-linked enzyme indicate that the native enzyme has two subunits of Mr 53,000 (a) and 65,000 (b) and is a hexamer arranged as a trimer of dimers (3 X (a X b)). The optimum pH was 10.5, and the enzyme was stable in the pH range from 7.5-8.5. The enzyme was activated by divalent metal ions, especially by Mg2+ and Mn2+, with no change in Km value. The enzyme was inhibited by metal-chelating agents, indicating it to be a metalloenzyme. Amastatin and bestatin strongly inhibited the enzyme, but leupeptin did not. The enzyme had a broad substrate specificity toward oligopeptides and amino acid amides but had little or no activity toward chromogenic substrates. The enzyme also could hydrolyze natural substrates contained in liver cytosol and accordingly produce many kinds of amino acids commonly found in proteins.  相似文献   

7.
Nucleotide pyrophosphatase [EC 3.6.1.9] was purified to homogeneity from human placenta using a monoclonal antibody affinity column. By sodium dodecylsulfate--polyacrylamide gel electrophoresis, the purified enzyme showed a major band at a molecular size of 130 K. The enzyme was a glycoprotein with N-linked oligosaccharides consisting of both complex- and oligomannoside-types. Substrate specificity to hydrolyze phosphodiester and phosphosulfate linkages as well as other properties were similar to those of nucleotide pyrophosphatase and phosphodiesterase from other sources.  相似文献   

8.
9.
Antiserum specific for diamine oxidase (DAO;EC 1.4.3.6) from Lens culinaris cross-reacted with DAO from several other members of the Leguminosae when tested by agar double diffusion. Antibodies purified by affinity chromatography were used to make an immunoadsorbent for the one-step purification of DAO from various species of the Leguminosae. This technique has made it possible to purify in one step the already characterized DAO from pea and lentil, and the unknown diamine oxidase from Cicer arietinum. This enzyme was partially characterized; it showed a pH optimum of 7.5 with putrescine as substrate and followed typical Michaelis-Menten kinetics with a Km of 2.4 × 10?4 M. Copper ligands and carbonyl group-directed reagents inhibited the enzyme.  相似文献   

10.
Human autoantibodies reactive against the tail domain exclusive to lamin A and absent from lamin C have been used for immunofluorescence studies on human fibroblast and epithelial cells. These autoantibodies were seen to react on mitotic cells where lamin A is present in a soluble depolymerized form and to react against lamin A in assembled interphase nuclear lamina after in situ extraction of chromatin. Taken together, these results support the suggestion that the tail domain of lamin A may be involved in the putative interaction of lamin A with chromatin.  相似文献   

11.
12.
Vacuolar proton-translocating ATPase from bovine kidney was purified in one step by immunoprecipitation and immunoaffinity chromatography using an immobilized anti-H+ATPase monoclonal antibody. The monoclonal antibody affinity matrix coprecipitated polypeptides with Mr of 70,000, a cluster at 56,000, 45,000, 42,000, 38,000, 33,000, 31,000, 15,000, 14,000, and 12,000 from solubilized bovine kidney microsomal membranes, a pattern that was unaffected by different detergent washing conditions. A nearly identical pattern of polypeptides was observed in H+ATPase partially purified by an entirely independent method. The immunoaffinity purified H+ATPase had reconstitutively active ATP-induced acidification and potential generation that was inhibited by N-ethylamaleimide. The purified enzyme had specific activities as high as 3.1 mumol/min/mg protein, dual pH optima at 6.5 and 7.2, and a Km for ATP of 150 microM. The substrate preference was ATP greater than ITP much greater than UTP greater than GTP greater than CTP. The affinity purified H+ATPase was stimulated by phosphatidyl glycerol greater than phosphatidyl inositol much greater than phosphatidyl choline greater than phosphatidyl serine. The immunoaffinity purified enzyme did not require monovalent anions or cations for activity, and the divalent cation preference for activity was Mn, Mg much greater than Ca greater than Co much greater than Sr, Ba. The enzyme was not inhibited by ouabain, azide, or vanadate, but had kappa 1/2 inhibitory concentrations of 22.2 microM for N-ethylmaleimide, 14.9 microM for NBD-Cl, 4.9 microM for N,N'-dicyclohexylcarbodiimide, 13.8 microM for 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, and 315 microM for Zn, values close to those for inhibition of proton transport in the native vesicles. The affinity purified kidney enzyme has similarities to but also significant differences in structural and enzymatic properties from those reported for other vacuolar H+ATPase.  相似文献   

13.
A new procedure utilizing immunoaffinity column chromatography has been used for the purification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) from human erythrocytes. The comparison between this rapid method (one step) and the tra- ditional procedure including ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography shows that the new method gives a highest specific activity with a highest yield in a short time. The characterization of the purified GAPDH reveals that the native enzyme is a homotetramer of -150 kDa with an absolute specificity for the oxidized form of nicotinamide adenine dinucleotide (NAD+). Western blot analysis using purified monospecific polyclonal antibodies raised against the purified GAPDH showed a single 36 kDa band corresponding to the enzyme subunit. Studies on the effect of temperature and pH on enzyme activity revealed optimal values of about 43℃ and 8.5, respectively. The kinetic parameters were also calculated: the Vmax was 4.3 U/mg and the Km values against G3P and NAD+ were 20.7 and 17.8 μM, respectively. The new protocol described represents a simple, economic, and reproducible tool for the purification of GAPDH and can be used for other proteins.  相似文献   

14.
The nuclear lamina is a karyoskeletal structure located at the nuclear periphery and intimately associated with the inner nuclear membrane. It is composed of a multigene family of proteins, the lamins, which show a conspicuous cell type-specific expression pattern. The functional role of lamins has not been definitively established but available information indicates that they are involved in the organization of nuclear envelope and interphase chromatin. Spermatogenesis is characterized, among other features, by stage-specific changes in chromatin organization and function. These changes are accompanied by modifications in the organization and composition of the nuclear lamina. In previous experiments we have determined that rat spermatogenic cells express a lamin closely related, if not identical, to lamin B1 of somatic cells; whereas rat somatic lamins A, C, D and E were not detected. Considering that chromatin reorganizations during spermatogenesis may be directly or indirectly related to changes of the nuclear lamina we have decided to further investigate lamin expression during this process. Here we report on the identification of a 52 kDa protein of the rat which, according to immunocytochemical and biochemical data, appears to be a novel nuclear lamin. Using meiotic stage-specific markers, we have also demonstrated that this short lamin is selectively expressed during meiotic stages of spermatogenesis.  相似文献   

15.
16.
A monoclonal antibody to the small subunit common to both mu- and m-calpains can be used in an immunoaffinity column to purify either mu- or m-calpain in a proteolytically active form. Extracts in 150 mM NaCl, pH 7.5, are loaded onto a column containing the anti-28-kDa antibody; the column is washed with 500 mM NaCl, pH 7.5, and the bound calpain is eluted with 150 mM NaCl, 50 mM Tris-HCl, pH 9.5, and 1 mM EDTA. These elution conditions do not affect the proteolytic activity of either mu- or m-calpain. It is most efficient to reduce the volume and to remove any proteolytic activity from crude extracts by using successive phenyl Sepharose and ion-exchange columns before loading onto the immunoaffinity column. The column purifies m-calpain more effectively than mu-calpain; m-calpain is greater than 90% pure after a single pass through this column, whereas mu-calpain can be purified to >70% purity. The epitope for the monoclonal antibody is between amino acids 92 and 104 (numbers for human calpain) in the 28-kDa subunit. Evidently, this area is shielded in the calpain molecule in a way that affects binding of the antibody to the native molecule.  相似文献   

17.
18.
Highly purified DNA polymerase alpha-DNA primase from normal human tissue (human placenta) has been prepared by immunoaffinity purification on immobilized anti-human DNA polymerase alpha monoclonal antibody SJK 287-38. According to data from SDS electrophoresis this preparation consists of subunits of 180, 160, 145, 140 kDa (a cluster of DNA-polymerizing subunits), 73 kDa (function unknown) and 59, 52 kDa (corresponding to primase). Three active enzyme forms of 270, 460 and 575 kDa have been revealed using native electrophoresis followed by detection of DNA polymerase activity.  相似文献   

19.
Hirai K  Toyohira S  Ohsako T  Yamamoto MT 《Genetics》2004,166(4):1795-1806
Proper segregation of homologous chromosomes in meiosis I is ensured by pairing of homologs and maintenance of sister chromatid cohesion. In male Drosophila melanogaster, meiosis is achiasmatic and homologs pair at limited chromosome regions called pairing sites. We screened for male meiotic mutants to identify genes required for normal pairing and disjunction of homologs. Nondisjunction of the sex and the fourth chromosomes in male meiosis was scored as a mutant phenotype. We screened 2306 mutagenized and 226 natural population-derived second and third chromosomes and obtained seven mutants representing different loci on the second chromosome and one on the third. Five mutants showed relatively mild effects (<10% nondisjunction). mei(2)yh149 and mei(2)yoh7134 affected both the sex and the fourth chromosomes, mei(2)yh217 produced possible sex chromosome-specific nondisjunction, and mei(2)yh15 and mei(2)yh137 produced fourth chromosome-specific nondisjunction. mei(2)yh137 was allelic to the teflon gene required for autosomal pairing. Three mutants exhibited severe defects, producing >10% nondisjunction of the sex and/or the fourth chromosomes. mei(2)ys91 (a new allele of the orientation disruptor gene) and mei(3)M20 induced precocious separation of sister chromatids as early as prometa-phase I. mei(2)yh92 predominantly induced nondisjunction at meiosis I that appeared to be the consequence of failure of the separation of paired homologous chromosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号